
Effective Identification of Failure-Inducing Changes:
A Hybrid Approach

Sai Zhang, Yu Lin, Zhongxian Gu, Jianjun Zhao

PASTE 2008

My program fails, why?

• Which part of code change is responsible for the regression test failure?

– Examine each code edits manually might be tedious and laborious

– Failures may result from a combination of several changes

Code changes

Identify failure-inducing changes

• Delta debugging [Zeller ESEC/FSE’99]

– A promising approach to isolate faulty changes

– It constructs intermediate program versions repeatedly to narrow
down the change set

• Can we develop more effective techniques?
– Integrate the strength of both static analyses and dynamic testing, to

fast narrow down the change set

– Goal: A complementary general approach to original debugging
algorithm (not restricted to one specific programming language)

Outline

• Background

– Delta debugging

– Improvement room

• Our hybrid approach
– Prune out irrelevant changes

– Rank suspicious change

– Construct valid intermediate version

– Explore changes hierarchically

• Experiment evaluation

• Related work

• Conclusion

Outline

• Background

– Delta debugging

– Improvement room

• Our hybrid approach
– Prune out irrelevant changes

– Rank suspicious change

– Construct valid intermediate version

– Explore changes hierarchically

• Experiment evaluation

• Related work

• Conclusion

Background

• Delta debugging

– Originally proposed by Zeller in ESEC/FSE’99

– Aim to isolate failure-inducing changes and simplify failed test input

• Basic idea
– Divide source changes into a set of configurations

– Apply each subset of configurations to the original program

– Correlate the testing result to find out the minimum faulty change set

Delta debugging: an example

Delta debugging works as follows:

Suppose there are eight changes: C1, C2, C3, …. C8

; and C7 is the only failure-inducing change

Step Configurations Result

1 C1, C2, C3, C4 PASS

2 C5, C6, C7, C8 FAIL

3 C5, C6 PASS

4 C7, C8 FAIL

5 C8 PASS

6 C7 FAIL

Result C7 is the only faulty change! FOUND!!!

A more complex example

Suppose there are eight changes: C1, C2, C3, …. C8

; and a combination C3 and C6 changes is the failure cause

Step Configurations Result

1 C1, C2, C3, C4 PASS

2 C5, C6, C7, C8 PASS

3 C1, C2, C5, C6, C7, C8 PASS

4 C3, C4, C5, C6, C7, C8 FAIL

5 C3, C5, C6, C7, C8 FAIL

6 C1, C2, C3, C4, C7, C8 PASS

7 C1, C2, C3, C4, C5, C6 FAIL

8 C1, C2, C3, C4, C5, PASS

Result C3 and C6 are the faulty changes

FOUND!!!

C3 is found!

C6 is found!

Original Delta debugging can also handle configuration inconsistent problem.

Can we make it faster?

• Key insights:

– Searching space

• Delta debugging (DD) searches the whole configuration set.

• Is it necessary?

– Configuration selection

• DD selects configurations in an arbitrary order.

• Can we improve the selection strategy?

– Intermediate version construction

• DD constructs intermediate program version by syntax difference, which
might result in inconsistence.

• Can we introduce semantic dependence information?

– Configuration exploration strategy

• DD treats all changes as a flat list.

• Can we explore changes hierarchically, and prune out irrelevant ones
earlier?

Outline

• Background

– Delta debugging

– Improvement room

• Our hybrid approach
– Prune out irrelevant changes

– Rank suspicious change

– Construct valid intermediate version

– Explore changes hierarchically

• Experiment evaluation

• Related work

• Conclusion

Our hybrid approach: an overview

• Reduce searching space

– Use static change impact analysis

– Then, focus on the relevant (suspicious) changes

• Rank suspicious changes
– Utilize dynamic testing result of both passing and failing tests

– Apply changes with higher likelihood first

• Construct valid intermediate version
– Use atomic change representation

– Guarantee the intermediate version constructed is compliable.

• Explore changes hierarchically
– From method-level to statement-level

– Prune a large number of changes earlier

Step 1: reduce searching space

• Generally, when regression test fails, only a portion of
changes are responsible

• Approach
– We divide code edits into a consistent set of atomic change

representations [Ren et al’ OOPSLA 04, Zhang et al ICSM’08].

– Then we construct the static call graph for the failed test

– Isolate a subset of responsible changes based on the atomic change
and static call graph information

• A safe approximation

Example
class A {

 int num = 10;

 public int getNum() {

 return num;

 }

}

class A{

 int num = 10;

 int tax = 5;

 public int getNum() {

 if(tax > 5)

 tax = 5;

 num = num + tax;

 return num;

 }

 public void setNum(int num) {

 this.num = num;

 }

}

Figure 1, original program

Figure 2, program after editing

pubic void testGetNum(){

 A a = new A();

 assertTrue(

 a.getNum() == 10);

}

Figure 3, a Junit test

Example (cont)

Table 1, A catalog of atomic changes for Java (from
Ren et al OOPSLA’04 paper)

AF (tax), FI(tax), CM(getNum()), AM(setNum(int)), CM(setNum(int))

Generate atomic changes

Add dependence relations

 FI (tax) AF(tax), CM(getNum()) AF(tax)

 CM(setNum(int)) AM(setNum(int))

Example (cont)

pubic void testGetNum(){

 A a = new A();

 assertTrue(

 a.getNum() == 10);

}

 FI (tax) AF(tax),

CM(getNum()) AF(tax)

CM(setNum(int)) AM(setNum(int))

Construct static call graph,

 and identify responsible changes

Call graph of the failed test

The responsible change set is:

① Changes appearing on the call graph

either as a node or an edge

② All dependent changes of changes in ①

CM(getNum())

All responsible changes:
CM(getNum())

AF(tax), FI(tax)

Step 2: rank suspicious changes

• Ideally speaking, changes which are most likely to contribute
to the failure should be ranked highest and tried first.

• The heuristic we used for ranking is similar to the Tarantula
approach [Jones et al ICSE’02]

• We compute a value for each atomic change c

%failed(c) returns, as percentage, the ratio of the number of failed tests

that cover c as a responsible change to the total failed test number.

Generate
Atomic-Change-

Chains

Faulty
Changes

Step 3: explore faulty changes
• The core module of our approach, an improved Three-Phase

delta debugging algorithm
– Focus on the responsible change set

– Increase the change granularity from coarse method level to fine
statement level in three steps

Three-Phase delta debugging working flow:

Change
set

Faulty
Chains

Delta debugging

Extract faulty
atomic changes

Delta debugging

Extract
suspicious
statements

Delta debugging

Result
First Phase

Second Phase

Third Phase

An atomic-change-chain starts from an atomic change

without any children, and includes all transitively

dependent changes

Back to the Example

All responsible changes:
CM(getNum())

AF(tax), FI(tax)

Static change impact analysis

Three-Phase delta debugging: Phase 1

Atomic-change-chains:
Only 1 chain, containing changes:
CM(getNum()), AF(tax), FI(tax)

Phase 2 Suspicious atomic changes:
CM(getNum()), FI(tax)

Delta debugging

Faulty change
CM(getNum())

Phase 3

Extract changed statements:
1. if(tax > 5) tax = 5;
2. num = num + tax;

Delta debugging

Faulty statement:
 num = num + tax;

We prune out all def-

change here

Final output

Other technical issue

• The correctness of intermediate program version

– The dependence between atomic changes guarantee the correctness
of intermediate version in phase 1 and 2 [Ren et al OOPSLA’04]

– However, in phase 3, the configurations could be inconsistent as the
original delta debugging

Outline

• Background

– Delta debugging

– Improvement room

• Our hybrid approach
– Prune out irrelevant changes

– Rank suspicious change

– Construct valid intermediate version

– Explore changes hierarchically

• Experiment evaluation

• Related work

• Conclusion

Prototype Implementation

• We implement our prototype called AutoFlow for both Java
and AspectJ programs
– Build on top of our Celadon [ICSM 08, ICSE’08 demo, ISSTA’08, student

poster] framework

– Modify Java/AspectJ compiler source code

Figure 4, tool architecture

Subject programs

• Two medium-sized Java/AspectJ programs, from UNL SIR and
AspectJ distribution package

Subject Type LOC #Ver #Me #Tests

XML-Security Java 16800 4 1221 112

Dcm AspectJ 3423 2 2 157

Case Study , XML-Security

• We found one test testSecOctetStreamGetNodeSet1()
passes in its 2nd version, but fails in its 3rd version

• Changes between 2nd and 3rd version (total 312 atomic changes)

Exploring changes by AutoFlow

Only needs 10 tests by AutoFlow vs 40 tests by Original delta debugging

After impact
analysis:

61 changes
Time saving is

also considerable

Outline

• Background

– Delta debugging

– Improvement room

• Our hybrid approach
– Prune out irrelevant changes

– Rank suspicious change

– Construct valid intermediate version

– Explore changes hierarchically

• Experiment evaluation

• Related work

• Conclusion

Related Work

• Delta debugging and its applications

– Zeller ESEC/FSE’99, FSE’02, ICSE’04, ISSTA’05

– Misherghi ICSE’06

• Change impact analysis and its applications
– Ryder et al PASTE’01, Ren et al OOPSLA’04

– Ren et al TSE’06, Chesley et al ICSM’05, Max FSE’06

• Fault localization techniques (closely related)
– Jones ICSE’02, Ren et al ISSTA’07, Jeffery et al ISSTA’08

Outline

• Background

– Delta debugging

– Improvement room

• Our hybrid approach
– Prune out irrelevant changes

– Rank suspicious change

– Construct valid intermediate version

– Explore changes hierarchically

• Experiment evaluation

• Related work

• Conclusion

Conclusion

• We present a hybrid approach to effectively identify failure-
inducing changes (requires 4X less tests)

• Implement the tool and present two case studies

• We recommend our approach to be an integrated part of the
delta debugging technique; when a regression test fails:
– Remove unrelated changes first

– Rank suspicious change, and

– Explore code edits from coarse-grained to fine-grained level

Future Directions

• Eliminate searching space

– Using more precise impact analysis approaches, such as dynamic
slicing, Execution-After information

• Perform more experiment evaluations

• Investigate the correlations between change impact analysis
and heuristic ranking

• Long term plan
– Explore how to incorporate static/statistical analysis techniques into

debugging tasks

– Combine testing and verification for effective/scalable fault
localization

