
Empirically Revisiting the

Test Independence Assumption

Sai Zhang, Darioush Jalali, Jochen Wuttke, Kıvanç Muşlu,

Wing Lam, Michael D. Ernst, David Notkin

University of Washington

2

Executing them in a different order:

Order dependence

Dependent

test
Two tests:

createFile(“foo”)

...

readFile(“foo”)

...

(the intended test results)

Executing them in default order:

3

Executing them in different orders:

Dependent

test

createFile(“foo”)

...

readFile(“foo”)

...

(test results by design)

Executing them in default order:

A test that yields

a different test result than

the default result

in a reordered subsequence

of the original test suite.

Visible test result rather than

internal program state

Use the default execution

order as baseline

Execute real tests rather than contrived ones

Why should we care about test dependence?

• Makes test behaviors inconsistent

• Affects downstream testing techniques

4

CPU 2

CPU 1

Test parallelization Test prioritization

Test selection

• Test independence is assumed by:

– Test selection

– Test prioritization

– Test parallel execution

– Test factoring

– Test generation

– …

Conventional wisdom:

test dependence is not a significant issue

5

31 papers in

ICSE, FSE, ISSTA, ASE,

ICST, TSE, and TOSEM

(2000 – 2013)

• Test independence is assumed by:

– Test selection

– Test prioritization

– Test parallel execution

– Test factoring

– Test generation

– …

Conventional wisdom:

test dependence is not a significant issue

31 papers in

ICSE, FSE, ISSTA, ASE,

ICST, TSE, and TOSEM

(2000 – 2013)

6

27

3
1

Assume test independence

without justification

As a threat

 to validity

Consider test

dependence

Is the test independence

assumption valid?

• Does test dependence arise in practice?

• What repercussions does test dependence have?

• How to detect test dependence?

7

Yes, in both human-written and automatically-generated suites

‒ Affecting downstream testing techniques

‒ Inconsistent results: missed alarms and false alarms

‒ Proof: the general problem is NP-complete
‒ Approximate algorithms based on heuristics work well

No!

Is the test independence

assumption valid?

• Does test dependence arise in practice?

• What repercussions does test dependence have?

• How to detect test dependence?

8

Yes, in both human-written and automatically-generated suites

‒ Affecting downstream testing techniques

‒ Inconsistent results: missed alarms and false alarms

‒ Proof: the general problem is NP-complete
‒ Approximate algorithms based on heuristics work well

No!

Implications:

Test independence should no

longer be assumed

New challenges in designing

testing techniques

Is the test independence

assumption valid?
• Does test dependence arise in practice?

• What repercussion does test dependence have ?

• How to detect test dependence?

9

Yes, in both human-written and automatically-generated suites

‒ Affecting downstream testing techniques

‒ Inconsistent results: missed alarms and false alarms

‒ The general problem is NP-complete
‒ Approximate algorithms based on heuristics work well

Methodology

10

Reported dependent tests

5 issue tracking systems

New dependent tests

4 real-world projects

Methodology

11

Reported dependent tests

5 issue tracking systems

• Search for 4 key phrases:

(“dependent test”, “test dependence”,

 “test execution order”, “different test outcome”)

• Manually inspect 450 matched bug reports

• Identify 96 distinct dependent tests

Characteristics:

‒ Manifestation

‒ Root cause

‒ Developers’ action

Manifestation

12

(default order) … …

#Tests = 1 (run in isolation)

(run after another) #Tests = 2

Number of tests involved to yield a different result

Manifestation

13

96 dependent tests

Number of tests involved to yield a different result

Manifestation

14

73

15

2

6

#Tests = 2

#Tests = 1

#Tests = 3

Unknown

82% can be revealed by

 no more than 2 tests

Number of tests involved to yield a different result

Root cause

15

96 dependent tests

Root cause

16

59

23

10

4 static variable

file system

database

Unknown

at least 61% are due to

side-effecting access to

static variables.

Developers’ action

17

98% of the reported tests are marked as major or minor issues

91% of the dependence has been fixed

‒ Improving documents

‒ Fixing test code or source code

Methodology

18

New dependent tests

4 real-world projects

• Human-written test suites

‒ 4176 tests

• Automatically-generated test suites

‒ use Randoop [Pacheco’07]

‒ 6330 tests

• Ran dependent test detection

 algorithms (details later)

29 dependent tests

354 dependent tests

Characteristics

• Manifestation: number of tests to yield a different result

19

29 manual

dependent tests

Characteristics

• Manifestation: number of tests to yield a different result

20

29 manual

dependent tests

23

2

4

#Tests= 1

354 auto-generated

dependent tests

#Tests = 2

#Tests = 3

• Manifestation: number of tests to yield a different result

Characteristics

21

29 manual

dependent tests

23

2

4

186

168

#Tests = 1

#Tests ≥ 2

#Tests= 1

#Tests = 2

#Tests = 3

• Manifestation: number of tests to yield a different result

• Root cause

– All because of side-effecting access of static variables

Characteristics

22

29 manual

dependent tests

23

2

4

186

168

#Tests = 1

#Tests ≥ 2

#Tests= 1

#Tests = 2

#Tests = 3

• Confirm all manual dependent tests

Developers’ actions

23

– tests should always “stand alone”, that is “test engineering 101”

– Merged two tests to remove the dependence

– Opened a bug report to fix the dependent test

‒ Wont fix the dependence, since it is due to the library design

Is the test independence

assumption valid?
• Does test dependence arise in practice?

• What repercussion does test dependence have ?

• How to detect test dependence?

24

Yes, in both human-written and automatically-generated suites

‒ Affecting downstream testing techniques

‒ Inconsistent results: missed alarms and false alarms

‒ The general problem is NP-complete
‒ Approximate algorithms based on heuristics work well

Reported dependent tests

25

5 issue tracking systems

96 dependent tests

Reported dependent tests

26

5 issue tracking systems

96 dependent tests

94

2

Missed alarms

False alarms

Example false alarm

void testDisplay() {

 //create a Display object

 …

 //dispose the Display object

}

27

void testShell() {

 //create a Display object

 …

}

In Eclipse, only one Display object is allowed.

In default order: testDisplay testShell

In a non-default order: testShell testDisplay

Led to a false bug report that took developers 3 months to resolve.

public final class OptionBuilder {

 static String argName = null;

 static void reset() {

 …

 argName = “arg”;

 }

}

Example missed alarm

28
 Hid a bug for 3 years.

Need to be set

to “arg” before

a client calls

any method in

the class.

BugTest.test13666 validates correct behavior.

 This test should fail,

 but passes when running in the default order

• Another test calls reset() before this test

public final class OptionBuilder {

 static String argName = null;

 static void reset() {

 …

 argName = “arg”;

 }

}

Example missed alarm

29
 Hid a bug for 3 years.

Need to be set

to “arg” before

a client calls

any method in

the class.

BugTest.test13666 validates correct behavior.

 This test should fail,

 but passes when running in the default order

• Another test calls reset() before this test

Example missed alarm

public final class OptionBuilder {

 static String argName = null;

 static void reset() {

 ……

 }

 static {

 argName = “arg”;

 }

}

30

Need to be set

to “arg” before

a client calls

any method in

the class.

BugTest.test13666 validates correct behavior.

 This test should fail,

 but passes when running in the default order

• Another test calls reset() before this test

Bug

fix

 Hid a bug for 3 years.

Test prioritization

31

…
A test execution order

…
A new test execution order

Achieve coverage faster

Improve fault detection rate

…

Each test should yield the same result.

Five test prioritization techniques
[Elbaum et al. ISSTA 2000]

32

Test prioritization technique

Randomized ordering

Prioritize on coverage of statements

Prioritize on coverage of statements not yet covered

Prioritize on coverage of methods

Prioritize on coverage of methods not yet covered

• Record the number of tests yielding different results

4 real-world projects

Total: 4176 manual tests

Evaluating test prioritization techniques

33

Test prioritization technique Number of tests that

yield different results

Randomized ordering 12

Prioritize on coverage of statements 11

Prioritize on coverage of statements not yet covered 17

Prioritize on coverage of methods 11

Prioritize on coverage of methods not yet covered 12

• Implication:
‒ Existing techniques are not aware of test dependence

Total: 4176 manual tests

Is the test independence

assumption valid?
• Does test dependence arise in practice?

• What repercussion does test dependence have ?

• How to detect test dependence?

34

Yes, in both human-written and automatically-generated suites

‒ Affecting downstream testing techniques

‒ Inconsistent results: missed alarms and false alarms

‒ The general problem is NP-complete
‒ Approximate algorithms based on heuristics work well

General problem of test dependence detection

35

NP-Complete

• Proof: reducing the Exact Cover problem to

 the dependent test detection problem

…
A test suite

…
All dependent tests

• Approximate algorithms

– Reversal algorithm

– Randomized execution

– Exhaustive bounded algorithm

– Dependence-aware bounded algorithm

Detecting dependent tests in a test suite

36

…
A test suite

…
All dependent tests

All algorithms are sound but incomplete

• Reversal algorithm

• Randomized execution

• Exhaustive bounded algorithm

• Dependence-aware bounded algorithm

Approximate algorithms by heuristics

37

Intuition: changing order of each pair may expose dependences

Approximate algorithms by heuristics

• Reversal algorithm

• Randomized execution

• Exhaustive bounded algorithm

• Dependence-aware bounded algorithm

38

…
Shuffle the execution order multiple times

Most dependent tests can be found by running

short test subsequences

(82% of the dependent tests are revealed by

 no more than 2 tests)

• Reversal algorithm

• Randomized execution

• Exhaustive bounded algorithm

• Dependence-aware bounded algorithm

Approximate algorithms by heuristics

k= 2

Executes all k-permutations

for a bounding parameter k

• Reversal algorithm

• Randomized execution

• Exhaustive bounded algorithm

• Dependence-aware bounded algorithm

Approximate algorithms by heuristics

k= 2

Record read/write info for each test

Filter away unnecessary permutations

x y

read write write

Evaluating approximate algorithms

41

Finding New dependent tests

4 real-world projects

• Human-written test suites

‒ 4176 tests

• Automatically-generated test suites

‒ use Randoop [Pacheco’07]

‒ 6330 tests

29 dependent tests

354 dependent tests

1

10

100

1000

10000

100000

1000000
10000000

100000000

Time cost (seconds)

0
50

100
150
200
250
300
350
400

Number of dependent tests

Evaluating approximate algorithms

42

Shuffle 1000 times

k = 2

(did not finish for some programs)

Actual cost

Estimated

cost

Cheap and detects half of the dependent tests! Detects the most dependent tests. Find all dependences within a bound, but computationally infeasible.

1

10

100

1000

10000

100000

1000000
10000000

100000000

Time cost (seconds)

0
50

100
150
200
250
300
350
400

Number of dependent tests

Evaluating approximate algorithms

43

Related work

• Existing definitions of test dependence

– Based on program state change [Kapfhammer’03]

– Informal definitions [Bergelson’06]

Our definition focuses on the concrete test execution result.

Program state change may not affect test execution result.

• Flaky tests [Luo et al’14, Google testing blog]

– Tests revealing inconsistent results

Dependent test is a special type of flaky test.

• Tools supporting to execute tests in different orders

– JUnit 4.1: executing tests in alphabetical order by name

– DepUnit, TestNg: supporting specifying test execution order

Do not support detecting test dependence.

44

• Revisiting the test independence assumption
– Test dependence arises in practice

– Test dependence has non-trivial repercussions

– Test dependence detection is NP-complete

– Heuristic algorithms are effective in practice

• Our tool implementation
 http://testisolation.googlecode.com

Contributions

45

Test independence should no longer be assumed!

[Backup slides]

46

Why not run each test in a separate

process?

• Implemented in JCrasher

• Supported in Ant + JUnit

• Unacceptably high overhead

– 10 – 138 X slowdown

• Recent work merges tests running in separate processes

into a single one [Bell & Kaiser, ICSE 2014]

47

Why more dependent tests in

automatically-generated test suites?

• Manual test suites:

– Developer’s understanding of the code and their testing goals help

build well-structured tests

– Developers often try to initialize and destroy the shared objects

each unit test may use

• Auto test suites:

– Most tools are not “state-aware”

– The generated tests often “misuse” APIs, e.g., setting up the

environment incorrectly

– Most tools can not generate environment setup / destroy code

48

What is the default test execution order?

• The intended execution order as designed

– Specified by developers

– Such as, in make file, ant file, or TestAll.java

– Lead to the intended results as developers want to see

49

Dependent tests vs. Nondeterministic tests

• Nondeterminism does not imply dependence

– A program may execute non-deterministically, but its tests

may deterministically succeed.

• Test dependence does not imply nondeterminism

– A program may have no sources of nondeterminism, but its

tests can still be dependent on each other

50

Controlled Regression Testing Assumption

(CRTA) [Rothermel et al., TSE 1996]

• A stronger assumption than determinism, forbidding:

– Porting to another system

– Nondeterminism

– Time-dependencies

– Interaction with the external environment

– (implicitly) test dependence

• The authors commented “CRTA is not necessarily

impossible” to employ.

• Our paper has a more practical focus on the

overlooked issue of test dependence

51

