
Practical Semantic Test Simplification
Sai Zhang

University of Washington, USA
szhang@cs.washington.edu

Abstract—We present a technique that simplifies tests at the
semantic level. We first formalize the semantic test simplification
problem, and prove it is NP-hard. Then, we propose a heuristic
algorithm, SimpleTest, that automatically transforms a test into
a simpler test, while still preserving a given property. The key
insight of SimpleTest is to reconstruct an executable and simpler
test that exhibits the given property from the original one.
Our preliminary study on 7 real-world programs showed the
usefulness of SimpleTest.

I. INTRODUCTION

A test must be effective at detecting bugs, but it must be
easy to understand. A test that finds no bug is useless for
testing. However, a bug-revealing test requiring substantial
comprehension effort, will become less useful in practice.

Recently, a number of techniques have been developed to
automatically generate new tests [5], [10]; however, there is
few solution to simplify an existing test to assist programmers
in understanding its behavior. In most scenarios, not every
statement in a test is equally important to a programmer. In
particular, when a test fails by violating a predefined assertion,
programmers may only be interested in the test code that is
related to the assertion violation, and ignore other irrelevant
parts. One practical solution is to provide programmers a sim-
plified but still executable test that requires less comprehension
effort. The simplified test violates the same assertion, but by
much shorter sequence. Programmers can choose to inspect
the simplified version to understand its failure cause. Besides
helping programmers diagnose a bug, a simplified test takes
less time and fewer resource to execute and is easier to explain
and communicate between programmers.
Existing approaches. Two existing approaches to simplify a
test are Delta debugging [8] and program slicing [7]. Delta
debugging [3], [8], [9], a general technique to simplify failure-
inducing inputs, takes a set of factors (i.e., all statements in a
failed test) that might influence a test outcome, and repeats the
test with subsets of these factors. By keeping only those factors
that are relevant to the test outcome, it systematically reduces
the set of factors until a minimized set is obtained. Program
slicing [1], [4], [7] uses control/data dependence information
to identify a subset of statements that may affect a given
property in a program. However, both Delta debugging and
program slicing are fundamentally limited in simplifying a test.
They essentially simplify a test exclusively at the syntax level
by isolating a statement subset, but are ineffective to simplify
an already syntactically-minimized test, which can still contain
many irrelevant statements.

Figure 1 shows a syntactically-minimized failed test, in
which if any statement is removed, the test would either be

uncompilable or no longer fail. Delta debugging can no longer
simplify this test, and computing a backward slice from the
failing assertion (line 10) still does not help: the slice consists
of all statements in Figure 1. In fact, the test in Figure 1 reveals
that the add method in the TreeSet class is buggy: it should
not accept a non-comparable object, but it does (line 8). Code
in lines 2 – 6 is entirely irrelevant about this bug, and should
be removed without distracting programmers’ attention.

public void test1() {
1. Object var1 = new Object();
2. Integer var2 = 0;
3. Integer var3 = 1;
4. Object[] var4 = new Object [] {var1, var2, var3};
5. List var5 = Arrays.asList(var4);
6. List var6 = var5.subList(var2, var3);
7. TreeSet var7 = new TreeSet();
8. boolean var8 = var7.add(var6);
9. Set var9 = Collections.synchronizedSet(var7);

//This assertion fails
10. assertTrue(var9.equals(var9));
}
Fig. 1. An automatically-generated test by Randoop [5] that reveals a bug
in JDK 1.6. It shows a call sequence ending with the creation of an object
that is not equal to itself. This test has already been syntactically-minimized.
Existing approaches [3], [4] can not further simplify this test.

Proposed solution. This paper presents SimpleTest, a test
simplification technique by exploring the space of simplifying
tests at the semantic level. Given a failed test that satisfies
a property φ, SimpleTest automatically transforms it into a
simpler test that still exhibits φ. To efficiently achieve this,
SimpleTest greedily computes a locally optimal simplification
instead of the globally optimal simplification. A key difference
of SimpleTest from existing test simplification techniques [3],
[4] is that SimpleTest tries to reconstruct an executable test
from the original one, instead of carving a subset of the
existing test code. SimpleTest starts from φ, follows back data
dependencies, and repeatedly replaces referred expressions in
each statement with other alternatives from the test code itself.
After each replacement, SimpleTest constructs a simpler test.
The simpler test is immediately executed to validate whether
φ is still satisfied. SimpleTest repeats the above replacement
process until the result test can no longer be simplified. As an
example, Figure 2 shows a simplified test for the failed test in
Figure 1. This simplified test triggers the same assertion at line
10, but is much shorter than the original one. In Figure 2, a
crucial step conducted by SimpleTest is to replace the referred
variable var6 at line 8 with the variable var1 defined at line
1. This replacement opens the possibility to further simplify
the test by removing irrelevant statements from line 2 to 6,

978-1-4673-3076-3/13/$31.00 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA
New Ideas and Emerging Results

1173

public void test1() {
1. Object var1 = new Object();
2. Integer var2 = 0;
3. Integer var3 = 1;
4. Object[] var4 = new Object [] {var1, var2, var3};
5. List var5 = Arrays.asList(var4);
6. List var6 = var5.subList(var2, var3);
7. TreeSet var7 = new TreeSet();
8. boolean var8 = var7.add(var1); //it was var6
9. Set var9 = Collections.synchronizedSet(var7);

//This assertion fails
10. assertTrue(var9.equals(var9));
}
Fig. 2. A simplified test by our SimpleTest algorithm for the test in Figure 1.
Line numbers are aligned with Figure 1. The strikeout part is not shown
in the final simplified test, and the replaced variable during simplification is
highlighted by underline.

and yields a much simpler test (the code in Figure 2 without
the strikeout lines).
Contributions. The main contributions of this paper are:
• Problem. We introduce the problem of semantic test

simplification and prove its NP-hardness (Section II).
• Technique. We propose SimpleTest, a simple but effec-

tive test simplification algorithm (Section III).
• Evaluation. We perform a preliminary study to show the

usefulness of SimpleTest (Section IV).

II. FORMALISM

In this section, we first formalize the semantic test simpli-
fication problem, then prove its NP-Hardness.

DEFINITION 1. A unit test t consists of a sequence of
statements s = {s1, s2, ..., sn} and a predicate φ as a testing
oracle.

We write t → φ when the execution of s satisfies φ.
Similarly, we write t 9 φ when the execution of s does not
satisfy φ1. We use |t| to denote the length of a unit test t,
which is equal to the number of statements in s.

DEFINITION 2. A statement s ∈ s in a unit test t is either a
value declaration statement or a method invocation statement:

s ::= vout = vin

| vout = m(vin1
, ..., vinn

)

A value declaration statement simply assigns a value vin
to a declared variable vout. A method invocation statement
invokes method m with argument variables vin1

, vin2
, ..., vinn

,
and assigns the result to an output variable vout. In our def-
inition, value declaration statements include class/static/local
field assignments, and method invocation statements include
constructor calls and array operations. Our definition models
deterministic and sequential test code, and does not cover
many sophisticated Java language features (e.g., threading and
exception handling).

We use ⊥ to denote vout if no output is available, such as in-
voking a void method. We define two predicates isValDecl(s)
and isMeCall(s) to check whether a statement s is a value
declaration statement or a method invocation statement, re-
spectively.

1For example, the bug-revealing property φ of the failed test in Figure 1
is: var9.equals(var9) returns false at line 10.

For s ∈ s, we use O(s) to denote its return variable vout,
and use I(s) to denote its input variable set:

O(s) =
{
⊥ if isMeCall(s) and returnType(m)=void
vout otherwise

I(s) =
{
{vin} if isValDecl(s)
{vin1

, ..., vinn
} if isMeCall(s)

For property φ, I(φ) denotes the input variables to evaluate
φ. To be a valid test, for each vi ∈ I(φ), there must ∃s ∈ s
such that vi = O(s). O(φ) denotes the evaluation result of φ
as:

O(φ) =
{

T if t → φ
F if t 9 φ

For each s ∈ s, we define:

getValue(s) =
{
vin if isValDecl(s)
⊥ otherwise

getMethod(s) =
{
m if isMeCall(s)
⊥ otherwise

For two statements s, s′ ∈ s, we define:
SameStatementKind(s, s′) = T if isValDecl(s) == isValDecl(s′)

&& isMeCall(s) == isMeCall(s′)
F otherwise

SameValueOrMethod(s, s′) =
T if SameStatementKind(s, s′)

&& getValue(s) == getValue(s′)
&& getMethod(s) == getMethod(s′)

F otherwise

DEFINITION 3. A unit test t = s ∪ φ is valid iff:
(1). each statement s ∈ s is type-correct
(2). ∀ si ∈ s, and ∀ v ∈ I(si), there ∃ sj ∈ s with j < i,

such that v = O(sj).

DEFINITION 4. Given a valid unit test t = s ∪ φ and t →
φ, t′ = s′ ∪ φ′ is a simplified test of t if t′ satisfies:

(1). φ′ = φ and t′ → φ′

(2). t′ is valid, and ∀ s′i ∈ s′, there ∃ s ∈ s, such that
SameValueOrMethod(s′i, s) returns true

(3) ∀ s′i, s
′
j ∈ s′ with i < j, there ∃ sk, sp ∈ s

with k < p, such that both SameValueOrMethod(s′i, sk) and
SameValueOrMethod(s′j , sp) return true.

In our definition, a simplified test does not invoke new
methods, re-order existing statements, or use new values.
Instead, all input variables are reused from the original test.
This tends to avoid changing the testing intention of the
original test code and prevent increasing test code complexity.

We next define the semantic test simplification problem.
DEFINITION 5. Given a valid test t = s ∪ φ and t → φ,

find a simplified test tmin, such that: for any t′ that is also a
simplified test of t, and |t′| ≥ |tmin| .

1174

SimpleTest
Input: a unit test t = s ∪ φ
Output: a simplified test t′ = s′ ∪ φ
Auxiliary Methods:
getReconstructionIndex(t, si, j): returns the the index of
the first statement in test t whose output variable is type-
compatible with the j-th input variable of statement si.
reverseStmtOrder(t): returns all statements in a test t in reverse
order.
Invariants:
checkProperty(t, φ) = true
checkProperty(t′, φ) = true

1: t′ ← removeRedundantStmts(t, φ)
2: for each statement si in reverseStmtOrder(t′) do
3: for each input j in statement si do
4: replace index ← getReconstructionIndex(t′, si, j)
5: ts ← reconstruct(t′, si, j, sreplace index)
6: if checkProperty(ts, φ) then
7: t′ ← removeRedundantStmts(ts, φ)
8: end if
9: end for

10: end for
11: return t′

Fig. 3. The SimpleTest algorithm for semantically simplifying a test.

The goal is to find a simplified test tmin that has the shortest
length among all simplified tests and still satisfies φ. Such a
test minimizes the number of statements, which, in our view,
is simpler than the original test.

Unfortunately, the problem of finding an element of tmin is
NP-hard. We next prove this claim by reducing the Set Cover
problem [2] to the test simplification problem.

THEOREM 1. The problem of finding an element of tmin is
NP-hard.
Proof. (Sketch) In the Set Cover problem, we are given a set
of elements U = {c1, ..., cm} (called the universe), and n sets
S1, ..., Sn whose union comprises the universe. The goal is
to identify the smallest number of sets from S1, ..., Sn whose
union still contains all elements in the universe. The Set Cover
problem is well known to be NP-hard [2].

We now reduce the Set Cover problem to the semantic
test simplification problem. Assume we are given an arbitrary
universe U = {c1, ..., cm} and n sets S1, ..., Sn on which we
must find the minimum number of sets whose union comprises
the universe U . We now construct a test t = s ∪ φ as follows:
• s consists of n+m statements. The first n statements are

value declaration statements, and the next m statements
are non-void method invocation statements. For conve-
nience, we denote n value declaration statements as: sv1 ,
..., svn , and denote m method invocation statements as:
sc1 , ..., scm .

• Each of the m method invocation statements takes exactly
one input variable, and returns one output variable. That
is, |I(sci)| = |O(sci)| = 1. For each set Si, if element cj
∈ Si, we denote the output variable of statement svi can

be used as the input variable of statement scj . That is,
svi

’s output variable is type-compatible with scj ’s input
variable.

• Predicate φ uses all output variables of the m method
invocation statements. That is, |I(φ)| = m, and for each
sci with 1 ≤ i ≤ m, O(sci) ∈ I(φ).

In the above construction, m method invocation statements
can not be removed, since φ uses all their output variables.
Thus, in any simplified test t′ = s′ ∪ φ, sci ∈ s′ (1 ≤ i ≤ m).

Let tmin = smin ∪ φ be a minimally simplified test. For
each 1 ≤ i ≤ n, if svi ∈ smin, we add set Si to the result.
Since the size of tmin has been minimized, this leads to a
minimal number of sets in the result. This shows that the test
simplification problem is NP-hard. �

III. THE SimpleTest Algorithm

Given a failed test t = s ∪ φ, where s = s1, ..., sn, Simple-
Test has three basic actions on t to simplify it:
• reconstruct(t, si, j, sk): returns a new test by replacing

the j-th input variable of statement si with the output
variable of statement sk. When applying this operation,
si must be a method invocation statement having at least
j input variables, and the output variable of the k-th
statement must not be ⊥.

• removeRedundantStmts(t, φ): returns a syntactically-
minimized test of t that still exhibits φ. This action
performs syntax-level test simplification by removing
all redundant statements which will not affect the test
execution result. This action can be instantiated using
any syntax-level test simplification technique. Our current
implementation repeatedly removes each statement in
t until no more statements can be removed. After a
statement is removed, our implementation immediately
executes the result test to validate whether φ is still
satisfied.

• checkProperty(t, φ): returns true if t → φ, and false

if t 9 φ. In our implementation, φ is a Java assertion.
The SimpleTest algorithm is described in Figure 3. It

first syntactically simplifies a given test by performing the
removeRedundantStmts action (line 1). Then, it greedily re-
constructs each statement by replacing its input variables with
possible alternatives created earlier in the same test (line 4).
After each reconstruction, the algorithm first checks whether φ
is still satisfied (line 6). If the reconstructed test still exhibits φ,
SimpleTest performs the removeRedundantStmts action again
to conduct further syntax-level test minimization (line 7).
Otherwise, it rolls back to the test before reconstruction and
continues to replace the next input variable (line 3).
THEOREM 2. The worst-case time complexity of SimpleTest
is O(n3), where n is the number of statements in a test.
Proof. (Sketch) Each of the for loop in Figure 3 has an
upper bound of n iterations. In our implementation, the worst-
case time complexity of the removeRedundantStmts method is
O(n). Therefore, the cost of the entire SimpleTest algorithm
is O(n3)

1175

Subject Programs Failed Tests Static Slicing Delta Debugging [3] DD + Slicing [4] SimpleTest
Name (version) Lines of Code Tests Bugs Stmts Stmts Time Stmts Time Stmts Time Stmts Time
Time And Money (0.51) 2372 23 3 1337 1337 0.1 1032 68.6 1032 70.0 90 20.6
jdom (1.1) 8513 3 1 194 194 0.1 93 16.8 93 17.2 19 8.5
Apache Commons Primitives (1.0) 9368 5 2 377 377 0.1 142 23.8 142 26.2 37 20.5
Apache Commons Beanutils (1.8.3) 11382 10 2 317 317 0.1 166 10.4 166 10.1 53 6.5
Apache Commons Math (2.2) 14469 18 3 747 705 0.1 490 35.8 467 33.5 114 19.3
Apache Commons Collections (3.2.1) 55400 8 3 399 399 0.1 283 100.9 283 105.8 49 59.1
java.util package (1.6.0 12) 48026 6 2 178 178 0.1 107 10.2 107 10.4 36 6.6
Total 149557 73 16 3549 3507 <1s 2313 266.5 2290 273.2 398 141.1

Fig. 4. Experimental results. Column “Failed Tests” shows the information of the original failed tests. Sub-column “Tests” shows the number of failed tests,
sub-column “bugs” shows the number of distinct bugs revealed, and sub-column “Stmts” shows the total number of test statements (excluding assertions).
Column “Static Slicing” shows the results of using static slicing for test simplification. Column “Delta debugging” shows the results of using a Delta
debugging-based test simplification technique [3]. Column “DD + Slicing” shows the results of using an existing approach by combining static slicing and
Delta debugging [4]. Column “SimpleTest” shows the results by using the SimpleTest algorithm proposed in this paper. In each column, sub-column “Stmts”
shows the number of statements after simplification (lower is better), and sub-column “Time” shows the time cost in seconds.

IV. PRELIMINARY EVALUATION

We implemented the SimpleTest algorithm in a prototype
tool. Our tool takes as input a JUnit test with a predicate in
the form of Java assertion. It parses the JUnit test, conducts
semantic test simplification, and outputs a simplified test that
still satisfies the same predicate.

We evaluated SimpleTest’s effectiveness by simplifying 73
bug-revealing unit tests from 7 real-world programs (see
the “Subject Programs” column in Figure 4). The tests are
generated by Randoop [5]; each of which reveals a real
bug. We also compared SimpleTest’s effectiveness with three
existing syntax-level test simplification techniques, namely,
(intra-procedure) static slicing [7], Delta debugging [3], [8],
and the combination of Delta debugging and static slicing [4].

As indicated by Figure 4, SimpleTest is surprisingly effec-
tive: it reduces the size of 73 failed tests from 3549 statements
to 398 statements code in 141.1 seconds.

For each failed test, we manually wrote an optimally-
simplified test (i.e., the shortest sequence that revealed the
same defect) to check whether SimpleTest can produce the
optimal result. As a result, 72 out of 73 simplified failed tests
are optimally simplified; only 1 test from Apache Commons
Beanutils is sub-optimal (the optimal test size is 6 while
SimpleTest outputs a test with size 7). This slight difference
is caused by SimpleTest’s greedy heuristic when performing
code transformation.

Compared to existing approaches [3], [4], [7], [8], the
simplified tests output by SimpleTest are substantially smaller
than the output by other approaches (8.8X smaller than the
results of static slicing, and about 5.5X smaller than the results
of Delta debugging and the combination of Delta debugging
with static slicing). It uses a moderate amount of time (slower
than static slicing, but about 1.9X faster than Delta debugging
and the combination of Delta debugging with static slicing).

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced and modelled the problem
of semantic test simplification, proved its NP-hardness, and
proposed a simple but effective algorithm, SimpleTest, that
often yields the optimal solution. Our preliminary evaluation
showed the effectiveness of SimpleTest.

For future work, we plan to extend SimpleTest to handle
test code containing if-else conditions and loops, and conduct
a user study to understand how a semantically-simplified test
helps programmers diagnose a bug. We are also interested in
comparing SimpleTest with other test simplification an under-
standing techniques (e.g., dynamic slicing [1], C-Reduce [6],
FailureDoc [11], and AutoFlow [9]), and exploring potential
downstream applications of SimpleTest.

ACKNOWLEDGEMENTS

This work was supported in part by ABB Corporation and
NSF grant CCF-1016701.

REFERENCES

[1] H. Agrawal and J. R. Horgan. Dynamic program slicing. In PLDI, pages
246–256, 1990.

[2] J. Kleinberg. Algorithm Design. Pearson Education, 2006.
[3] Y. Lei and J. H. Andrews. Minimization of randomized unit test cases.

In ISSRE, pages 267–276, 2005.
[4] A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and B. Meyer. Efficient unit

test case minimization. In ASE, 2007.
[5] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed

random test generation. In ICSE ’07, pages 75–84.
[6] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang. Test-case

reduction for c compiler bugs. In PLDI, 2012.
[7] M. Weiser. Program slicing. In ICSE, 1981.
[8] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing

input. TSE, 28:183–200, February 2002.
[9] S. Zhang, Y. Lin, Z. Gu, and J. Zhao. Effective identification of failure-

inducing changes: a hybrid approach. In PASTE, 2008.
[10] S. Zhang, D. Saff, Y. Bu, and M. D.Ernst. Combined static and dynamic

automated test generation. In ISSTA’ 2011.
[11] S. Zhang, C. Zhang, and M. D. Ernst. Automated documentation

inference to explain failed tests. In Proc. ASE ’11.

1176

