Software Bug Localization with
Markov Logic

Sai Zhang, Congle Zhang
University of Washington

Presented by Todd Schiller

Computer Science & Engineering —|—s

lllllllllll f WASHINGTON

Software bug localization: finding the likely
buggy code fragments

A software system Some observations
(source code) (test results, code coverage,
bug history, code dependencies,
etc.)

A

A ranked list of likely
buggy code fragments

An example bug localization technique
(Tarantula [Jones’03])

 Input: a program + passing tests + failing tests

* Output: alist of buggy statements |2 if (& == B) |
4. return b;

Example: o1 a=argl

) argl=1 arg 2. b = arg2
arg2 =2 A 5. } else {
max (argl, arg2) { 6. return a;

1. a = arqgl . v

2. b = arg2 ¢ ¢ °

3. if (a >x=Db) {i = o °

4. return b; g .

5. } else { o

6. return a;

7. }

}

Tarantula’s ranking heuristic

For a statement: s
%fail(s)
%fail(s) + %pass(s)

i

Percentage of failing tests Percentage of passing tests
covering statement s covering statement s

Suspiciousness(s) =

This heuristic is effective in practice [Jones’05]

Problem: existing techniques lack an interface layer

e Heuristics are hand crafted

* Techniques are often defined in an ad-hoc way

Adding an interface layer

Who should be the interface layer?

Markov logic network as an interface layer

Why Markov Logic Network
[Richardson’05]?

* Use first order logic to express key insights

— E.g., estimate the likelihood of cancer (x) for people x

Example rules:

smoke (x) => cancer (x)

smoke (x) AN £x=s =

S Nasw
: : ses cancer
you will smoke j#vour

ds (x,

friend

friends of friends are
friends

z)

Why Markov Logic Network
[Richardson’05]?

* Use first order logic to express key insights

— E.g., estimate the likelihood O@r(x) for pe@

Example rules:

wl smoke (x) => cancer (x)
w2 smoke (x) A friend(x,y) => smoke(y)

w3 friends(x, y) AN friends(y, z) => friends(x, z)

* Efficient weight learning and inference

— Learning rule weights from training data
— Estimate cancer (x) for a new data point

(details omitted here)

Markov logic for bug localization

Training data

X Alchemy
(learning)

A markov logic network engine

First-order logic rules
(capture insights)

Researchers

l Rule weights

Alchemy
(inference)
|

A statement: s

Likelihood of s
being buggy

<€

Markov logic for bug localization

D.lfferent rules for. . . Training data
different bug localization algorithms l

@rder IogicD
— g Alchemy
(learning)

Researchers
A markov logic network engine

l Rule weights

Likelihood of s Alchemy
being buggy (inference)

A statement: s

Our prototype: MLNDebugger

* First-order rules

1. cover(test, s) A fail (test)

2. cover (tes}?\\{\ass (test)

3. co

=> buggy (s)
=> = buggy (s)

- a_Aa

gy (s2)

4. d

If a state

Lﬁ:j A statement that was buggy t
sta ;

A statement covered by a
passing test is not buggy

52)

'}

1f (foo (x)) «~{ Bugsy!
bar () ; Correct!

gY

0O () Buggy!

) Correct!

gy

Evaluating MLNDebugger on 4
Siemens benchmarks

* 80+ seeded bugs
— 2/3 as training set
— 1/3 as testing set

* Measurement on the testing set

— Return top k suspicious statements, check the
percentage of buggy ones they can cover.

* Baseline: Tarantula [Jones’ ICSE 2003]

coverage

coverage

Experimental results

top k suspicious

ba:
mln
L] 20 40 60O 80 100 120 140 160 180 200
n r top k suspicious
-1 ' ' I:;asel ine
mln
L] 50 100 150 200

coverage

mln
0.1 . L L L
L] 10 20 30 40
top k suspicious
1 T T
baseline
mln
©.9]
0.8]
0.7]
o
[
il
T ©.6 1
3
<1
o
0.5]
0.4 1
0.3]
0.2 . - . + : t .
20 40 2] 80 100 120 140 160

I
baselfine

top k suspicious

50

More in the paper...

~ormal definition
nference algorithms
mplementation details

mplications to the bug localization research

Contributions

* The first unified framework for automated debugging

— Markov logic network as an interface layer: expressive, concise, and
elegant

* A proof-of-concept new debugging technique using the
framework

* An empirical study on 4 programs
— 80+ versions, 8000+ tests

— Outperform a well-known technique

