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Software bug localization:  finding the likely 
buggy code fragments 

A software system 
(source code) 

Some observations 
(test results, code coverage,  
  bug history,  code dependencies,   
  etc.) 

A ranked list of likely  
buggy code fragments 



  max(arg1, arg2) { 

1.  a = arg1 

2.  b = arg2 

3.  if (a   b) { 

4.      return b; 

5.  } else { 

6.      return a; 

7.  } 

  } 

>= 

An example bug localization technique 
(Tarantula [Jones’03]) 

• Input:     a program +  passing tests + failing tests 

• Output:  a list of buggy statements 
 

Example: 

< 

 arg1 = 1 
 arg2 = 2 

Tests 

arg1 = 2 
arg2 = 1 

arg1 = 2 
arg2 = 2 

3. if (a >= b) { 

4. return b; 

1. a = arg1 

2. b = arg2 

5. } else { 

6.   return a; 



Tarantula’s ranking heuristic 

%𝑓𝑎𝑖𝑙(𝑠)

 %𝑓𝑎𝑖𝑙 𝑠 + %𝑝𝑎𝑠𝑠(𝑠)
 Suspiciousness(s) =  

Percentage of failing tests 
covering statement s 

Percentage of passing tests 
covering statement s 

This heuristic is effective in practice [Jones’05] 

For a statement: s 



Problem: existing techniques lack an interface layer 

• Heuristics are hand crafted 

• Techniques are often defined in an ad-hoc way  

• A persistent problem in the research community 
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Adding an interface layer 
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Interface layer 

Why an interface layer? 
 

•      Focus on key design insights 
 

•      Avoid “magic numbers “ in heuristics 
 

•      Fair basis for comparison 
 

•      Fast prototyping 



Who should be the interface layer? 
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Markov logic network as an interface layer 
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Markov Logic Network 



Why Markov Logic Network 
[Richardson’05]? 

• Use first order logic to express key insights 

– E.g.,  estimate the likelihood of cancer(x) for people x 

    Example rules: 

     smoke(x) => cancer(x) 

     smoke(x) ∧  friend(x,y) => smoke(y) 

     friends(x, y) ∧ friends(y, z) => friends(x, z) 

 
smoke causes cancer 

you will smoke if your 
friend smokes friends of friends are 

friends 



Why Markov Logic Network 
[Richardson’05]? 

• Use first order logic to express key insights 

– E.g.,  estimate the likelihood of cancer(x) for people x 

    Example rules: 

     smoke(x) => cancer(x) 

     smoke(x) ∧  friend(x,y) => smoke(y) 

     friends(x, y) ∧ friends(y, z) => friends(x, z) 

 

• Efficient weight learning and inference 

– Learning rule weights from training data 

– Estimate cancer(x) for a new data point 

w1 

w2 

w3 

(details omitted here)  



Markov logic for bug localization 

Researchers 

First-order logic rules 
  (capture insights) Alchemy 

(learning) 
A markov logic network engine 

Training data 

Alchemy 
(inference) 

Rule weights 

A statement: s   

Likelihood of s  
being buggy 



Markov logic for bug localization 

Researchers 

First-order logic rules 

Alchemy 
(learning) 

A markov logic network engine 

Training data 

Alchemy 
(inference) 

Rule weights 

A statement: s 

Likelihood of s  
being buggy 

Different rules for 
different bug localization algorithms 



Our prototype: MLNDebugger 

• First-order rules 
1. cover(test, s) ∧ fail(test) => buggy(s) 

2. cover(test, s) ∧ pass(test) => ¬ buggy(s) 

3. control_dep(s1, s2) ∧ buggy(s1) => ¬ buggy(s2) 

4. data_dep(s1, s2) ∧ buggy(s1) => ¬ buggy(s2) 

5. wasBuggy(s) => buggy(s) 

 Learning and inference 

Rules + Weights A statement: 
stmt 

How likely stmt is buggy 
 

A statement covered by a 
failing test is buggy 

If a statement  has control 
dependence on a buggy 

statement, then it is not buggy 

If a statement  has data flow 
dependence on a buggy 

statement, then it is not buggy 

 v = foo() 

 bar(v) 

Buggy! 

Correct! 
A statement that was buggy 

before is buggy 

A statement covered by a 
passing test is not buggy 

Buggy! 

Correct! 

if(foo(x)) { 

   bar(); 

}  

Buggy! 

Correct! 



Evaluating MLNDebugger on 4 
Siemens benchmarks 

• 80+ seeded bugs 
– 2/3 as training set 

– 1/3 as testing set 

 

• Measurement on the testing set 
– Return top k suspicious statements, check the 

percentage of buggy ones they can cover. 

 

• Baseline: Tarantula [Jones’ ICSE 2003] 
 



Experimental results 

Tarantula 

MLNDebugger 



More in the paper… 

• Formal definition 

• Inference algorithms 

• Implementation details 

• Implications to the bug localization research 



Contributions 

• The first unified framework for automated debugging 
– Markov logic network as an interface layer: expressive, concise, and 

elegant 

 

• A proof-of-concept new debugging technique using the 
framework  

 

• An empirical study on 4 programs 
– 80+ versions, 8000+ tests 

– Outperform a well-known technique 

 


