
Software Bug Localization with
Markov Logic

Sai Zhang, Congle Zhang

University of Washington

Presented by Todd Schiller

Software bug localization: finding the likely
buggy code fragments

A software system
(source code)

Some observations
(test results, code coverage,
 bug history, code dependencies,
 etc.)

A ranked list of likely
buggy code fragments

 max(arg1, arg2) {

1. a = arg1

2. b = arg2

3. if (a b) {

4. return b;

5. } else {

6. return a;

7. }

 }

>=

An example bug localization technique
(Tarantula [Jones’03])

• Input: a program + passing tests + failing tests

• Output: a list of buggy statements

Example:

<

 arg1 = 1
 arg2 = 2

Tests

arg1 = 2
arg2 = 1

arg1 = 2
arg2 = 2

3. if (a >= b) {

4. return b;

1. a = arg1

2. b = arg2

5. } else {

6. return a;

Tarantula’s ranking heuristic

%𝑓𝑎𝑖𝑙(𝑠)

 %𝑓𝑎𝑖𝑙 𝑠 + %𝑝𝑎𝑠𝑠(𝑠)
 Suspiciousness(s) =

Percentage of failing tests
covering statement s

Percentage of passing tests
covering statement s

This heuristic is effective in practice [Jones’05]

For a statement: s

Problem: existing techniques lack an interface layer

• Heuristics are hand crafted

• Techniques are often defined in an ad-hoc way

• A persistent problem in the research community

Tarantula
Jones ICSE’03

xDebug
Wong, Compsac’07

CBI
Liblit PLDI’05

Raul
ICSE’09

Wang
ICSE’09 …

Static
Code Info

Line
coverage

Predicate
Def-use
relations

Branch
coverage …

…

Observations

Techniques

Adding an interface layer

Tarantula
Jones ICSE’03

xDebug
Wong, Compsac’07

CBI
Liblit PLDI’05

Raul
ICSE’09

Wang
ICSE’09 …

Static
Code Info

Line
coverage

Predicate
Def-use
relations

Branch
coverage …

Interface layer

Why an interface layer?

• Focus on key design insights

• Avoid “magic numbers “ in heuristics

• Fair basis for comparison

• Fast prototyping

Who should be the interface layer?

Tarantula
Jones ICSE’03

xDebug
Wong, Compsac’07

CBI
Liblit PLDI’05

Raul
ICSE’09

Wang
ICSE’09 …

Static
Code Info

Line
coverage

Predicate
Def-use
relations

Branch
coverage …

Markov logic network as an interface layer

Tarantula
Jones ICSE’03

xDebug
Wong, Compsac’07

CBI
Liblit PLDI’05

Raul
ICSE’09

Wang
ICSE’09 …

Static
Code Info

Line
coverage

Predicate
Def-use
relations

Branch
coverage …

Markov Logic Network

Why Markov Logic Network
[Richardson’05]?

• Use first order logic to express key insights

– E.g., estimate the likelihood of cancer(x) for people x

 Example rules:

 smoke(x) => cancer(x)

 smoke(x) ∧ friend(x,y) => smoke(y)

 friends(x, y) ∧ friends(y, z) => friends(x, z)

smoke causes cancer

you will smoke if your
friend smokes friends of friends are

friends

Why Markov Logic Network
[Richardson’05]?

• Use first order logic to express key insights

– E.g., estimate the likelihood of cancer(x) for people x

 Example rules:

 smoke(x) => cancer(x)

 smoke(x) ∧ friend(x,y) => smoke(y)

 friends(x, y) ∧ friends(y, z) => friends(x, z)

• Efficient weight learning and inference

– Learning rule weights from training data

– Estimate cancer(x) for a new data point

w1

w2

w3

(details omitted here)

Markov logic for bug localization

Researchers

First-order logic rules
 (capture insights) Alchemy

(learning)
A markov logic network engine

Training data

Alchemy
(inference)

Rule weights

A statement: s

Likelihood of s
being buggy

Markov logic for bug localization

Researchers

First-order logic rules

Alchemy
(learning)

A markov logic network engine

Training data

Alchemy
(inference)

Rule weights

A statement: s

Likelihood of s
being buggy

Different rules for
different bug localization algorithms

Our prototype: MLNDebugger

• First-order rules
1. cover(test, s) ∧ fail(test) => buggy(s)

2. cover(test, s) ∧ pass(test) => ¬ buggy(s)

3. control_dep(s1, s2) ∧ buggy(s1) => ¬ buggy(s2)

4. data_dep(s1, s2) ∧ buggy(s1) => ¬ buggy(s2)

5. wasBuggy(s) => buggy(s)

 Learning and inference

Rules + Weights A statement:
stmt

How likely stmt is buggy

A statement covered by a
failing test is buggy

If a statement has control
dependence on a buggy

statement, then it is not buggy

If a statement has data flow
dependence on a buggy

statement, then it is not buggy

 v = foo()

 bar(v)

Buggy!

Correct!
A statement that was buggy

before is buggy

A statement covered by a
passing test is not buggy

Buggy!

Correct!

if(foo(x)) {

 bar();

}

Buggy!

Correct!

Evaluating MLNDebugger on 4
Siemens benchmarks

• 80+ seeded bugs
– 2/3 as training set

– 1/3 as testing set

• Measurement on the testing set
– Return top k suspicious statements, check the

percentage of buggy ones they can cover.

• Baseline: Tarantula [Jones’ ICSE 2003]

Experimental results

Tarantula

MLNDebugger

More in the paper…

• Formal definition

• Inference algorithms

• Implementation details

• Implications to the bug localization research

Contributions

• The first unified framework for automated debugging
– Markov logic network as an interface layer: expressive, concise, and

elegant

• A proof-of-concept new debugging technique using the
framework

• An empirical study on 4 programs
– 80+ versions, 8000+ tests

– Outperform a well-known technique

