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ABSTRACT
When regression tests fail unexpectedly after a long session of edit-
ing, it may be tedious for programmers to find out the failure-
inducing changes by manually inspecting all code edits. To elimi-
nate the expensive effort spent on debugging, we present a hybrid
approach, which combines both static and dynamic analysis tech-
niques, to automatically identify the faulty changes. Our approach
first uses static change impact analysis to isolate a subset of respon-
sible changes for a failed test, then utilizes the dynamic test execu-
tion information to rank these changes according to our proposed
heuristic (indicating the likelihood that they may have contributed
to the failure), and finally employs an improved Three-Phase delta
debugging algorithm, working from the coarse method level to the
fine statement level, to find a minimal set of faulty statements.

We implemented the proposed approach for both Java and As-
pectJ programs in our AutoFlow prototype. In our evaluation with
two third-party applications, we demonstrate that this hybrid ap-
proach can be very effective: at least for the subjective programs
we investigated, it takes significantly (almost 4X ) fewer tests than
the original delta debugging algorithm to locate the faulty code.

1. INTRODUCTION
Programmers often spend a significant amount of time debug-

ging programs in order to reduce the number of bugs in software
releases. In modern software development, coding and testing are
interleaved activities to assure code quality. Typically, when regres-
sion tests fail or produce any unexpected result after a long session
of editing, it may indicate potential defects in the updated software.
When attempting to fix an exhibited bug, programmers usually: (1)
identify statements involved in failed tests, (2) narrow the search
by selecting suspicious changes that might contain faults, (3) hy-
pothesize about the suspicious faults, and (4) restore the program
variables to a specific state [8]. However, the search of suspicious
changes is an arduous, highly involved, and manual process. This
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phase can be quite time-consuming and expensive.
The high cost of locating fault causes in software evolution has

motivated the development of automatic debugging techniques, such
as [7, 12, 14, 16, 17, 19, 21, 33]. Of particular interest for our work
is the delta debugging algorithm provided by Zeller [27]. In the
work [27] by Zeller et al. on delta debugging, the reason for a pro-
gram failure is identified as a set of differences (the deltas) between
program versions that distinguish a passed program execution from
a failed one. A set of failure-inducing differences is determined
by repeatedly applying different subsets of the changes (the con-
figurations) to the original program and observing the outcome of
executing the intermediate programs. By correlating the outcome
of each execution with the set of changes applied, one can narrow
the set of failure-inducing changes. It was shown [27] that delta
debugging is effective in finding faulty code even in large software
applications like GDB [3]. However, the original delta debugging
algorithm is a general and language-independent technique appli-
cable to minimizing the suspicious changes for better debugging.
When employing it to a specific programming language like Java,
this approach can be improved. For instance, the original delta de-
bugging algorithm searches the entire set of changes to identify the
failure-inducing ones. However, for a specific failing test, a portion
of uncorrelated changes can be ignored and we only need to focus
on the related changes. Also, delta debugging selects and applies
the changes in an arbitrary order. But ideally, the changes which
are most likely to contribute to the failure should be ranked highest
and tried first. Furthermore, one of the most important practical
problems in delta debugging is inconsistent configurations. Since
the original delta debugging builds the intermediate program ver-
sions by using the structural differences between a succeeding and
failing program version (e.g., changing one line or one character to
generate an intermediate program version), it is likely that several
resulting configurations are inconsistent - combinations of changes
that do not result in a testable program. In addition, delta debugging
treats all program changes as one flat atomic list. However, if we
apply delta debugging to each level of configurations, a large por-
tion of irrelevant changes might be pruned out earlier. Therefore,
there is clearly scope to improve upon delta debugging.

In this paper, we present a hybrid approach that involves both
static and dynamic analysis techniques to automate the debugging
process. Static analysis lends itself to obtaining generalized prop-
erties from the program text, while dynamic analysis offers the se-
mantics and ease of concrete program execution. The need and
benefit to combine the two approaches has been repeatedly stated in
the software engineering community [10,26]. More specifically, in
locating the failure-inducing changes, a static analysis can soundly
analyze an entire program and prune out all unrelated changes for
a specific failure, while a dynamic analysis can avoid analysis ap-
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proximations and help pinpoint the faulty code. In our approach,
we use atomic change [20,32] representation to capture the seman-
tic differences between a succeeding and a failing program version.
Then we use static change impact analysis [32] to isolate a subset
of responsible changes for the failed test (reduce the search space).
We next collect the dynamic tests execution information to rank
these responsible changes according to our proposed heuristic, in-
dicating the likelihood that they may have contributed to the failure
(optimize the change selection). Finally, we employ an improved
Three-Phase delta debugging algorithm to multiple levels of pro-
gram changes, working from the coarse method level to the fine
statement level, to determine a minimal set of faulty changes (han-
dle multiple configuration granularities). Furthermore, the inter-
dependence relationships between atomic changes guarantee most
of the generated intermediate program versions are syntactically
valid. Therefore, the number of tests that need to be re-tested due
to program inconsistency can be further reduced.

The goal of our work is to provide a general approach for im-
proving the effectiveness of locating faulty changes. It should not
be only applicable to one specific language. We currently imple-
ment our approach for Java and AspectJ [15] - two popular lan-
guages in object-oriented and aspect-oriented paradigms, - in our
AutoFlow debugging framework. In the experiment with two non-
trivial third-party applications, we demonstrate the effectiveness of
this hybrid approach compared to the original delta debugging: for
both Java and AspectJ programs, it takes significantly (almost 4X)
fewer tests to locate the failure-inducing changes.

In summary, the main contributions of this paper are: (1) a novel
hybrid analysis approach for identifying failure-inducing changes
in software evolution, (2) a tool that implements the proposed ap-
proach for Java and AspectJ programs, and (3) an experimental
study showing that our approach can be effective in locating the
faulty code with significantly less overhead.

We first begin with the background of delta debugging and change
impact analysis (Section 2), and then present our hybrid debugging
approach (Section 3). Two case studies using our AutoFlow pro-
totype highlight the practical issues (Section 4). We close with a
discussion of related and future work, where we recommend our
hybrid approach as an integrated part of the delta debugging tech-
nique after any failing regression test (Section 5 and Section 6).

2. BACKGROUND AND EXAMPLE
We first introduce the background of the delta debugging algo-

rithm and change impact analysis technique. Then we present a
motivating example to give an intuition of our approach.

2.1 Delta Debugging
Delta debugging, proposed by Zeller [28], is a general approach

for automating faulty change isolation and test case minimization.
As summarized in [17], it consists of two algorithms:

• Simplification: This algorithm simplifies the failure-inducing
input by examining smaller configurations of the input. The
algorithm recurses on the smaller failure configurations until
it can not produce a smaller configuration which still pro-
duces a failure.

• Isolation: This algorithm attempts to find a passing config-
uration such that with the addition of some elements it be-
comes a failing configuration.

Simplification produces inputs which still cause a program fail-
ure. It may be less intuitive as a fault localization support for pro-
grammers. Given the simplified test inputs, programmers may still
need to manually inspect the potentially large change set to iden-
tify which part should be responsible for the failure. In this paper,
we focus on the second algorithm, isolation. The isolation delta

debugging algorithm [27], hereafter called dd, is to isolate failure-
inducing configurations. The input to dd is a set of configurations
that cause a program fail when applying to the base program, and
the output is a minimal set of failure-inducing configurations.

2.2 Change Impact Analysis
Change impact analysis [6, 31] aims to determine the effects of

a source editing session. The analysis technique used in this paper
relies on the computation of a set of atomic changes. The concept
of atomic change is proposed in [6] for Java, and is extended to
aspect-oriented paradigm [31] in our previous work. The atomic
changes shown in Table 1 and 2 represent the source code modi-
fications at a coarse method level. Our earlier research prototype,
Celadon [31], performs static change impact analysis for AspectJ
programs1. When given two program versions, Celadon divides
program edits into a set of atomic changes, identifies all affected
program fragments and a subset of regression tests affected by these
changes. In essence, for each affected test, Celadon automatically
identifies all its responsible changes which may affect its behav-
ior. Initial experiments with Celadon on both Java and AspectJ
programs have evidenced promising results for these analyses [32].

Abbreviation Atomic Change Name
AF Add a field
DF Delete a Field
FI Change a Field Initialization
AM Add an Empty Method
DM Delete an Empty Method
CM Change Body of Method
AC Add an Empty Class
DC Delete an Empty Class
LC Change Virtual Method Lookup

Table 1: A catalog of atomic changes for Java programs

Additionally, there are semantic dependencies between atomic
changes. That is, an atomic change C1 is dependent on another
atomic change C2, if applying C1 to the original version of the
program without also applying C2 will cause a syntactically invalid
program. The syntactic dependence relationship (i.e., in the above
example, C2 is a prerequisite for C1) between atomic changes is
crucial in constructing syntactic valid intermediate program ver-
sions during delta debugging and will be further explored in Sec-
tion 3. Though the abstraction used by Celadon is the method-level
change, in this hybrid debugging approach we will extract all state-
ment changes to determine the faulty code at the statement level.

2.3 Example
We next present a contrived AspectJ program to give an intuition

of our debugging approach. Details will be given in Section 3.
Since the AspectJ language is a superset of Java, the Java programs
can be treated in the same way in our approach.

Figure 1 shows a small AspectJ program. In Figure 2, there are
three JUnit tests, testDebit, testCredit and testTransfer
for the program. The original program consists of all program frag-
ments except for those marked by underline. In this example, we
assume the source edits marked by underline in Figure 1 are all
newly added.

The JUnit tests in Figure 2 pass in the original program, but
method testTransfer() fails in the updated program version.
We start to debug by first decomposing the source editing into a
set of atomic changes. The atomic changes corresponding to the
source edits in Figure 1 are shown in Figure 3. Each atomic change
is shown as a box, where the top half of the box shows the cate-
gory of the change (Table 1 and 2), and the bottom half shows the

1Since AspectJ is an extension to Java, Celadon can also handle Java programs.
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Abbreviation Atomic Change Name
AA Add an Empty Aspect
DA Delete an Empty Aspect
INF Introduce a New Field
DIF Delete an Introduced Field
CIFI Change an Introduced Field Initializer
INM Introduce a New Method
DIM Delete an Introduced Method
CIMB Change an Introduced Method Body
AEA Add an Empty Advice
DEA Delete an Empty Advice
CAB Change an Advice Body
ANP Add a New Pointcut
CPB Change a Pointcut Body
DPC Delete a Pointcut
AHD Add a Hierarchy Declaration
DHD Delete a Hierarchy Declaration
AAP Add an Aspect Precedence
DAP Delete an Aspect Precedence
ASED Add a Soften Exception Declaration
DSED Delete a Soften Exception Declaration
AIC Advice Invocation Change

Table 2: A catalog of atomic changes for AspectJ programs

method, field or advice involved. An arrow from an atomic change
A1 to A2 indicates that A2 is dependent on A1.

After getting all atomic changes, we next isolate the responsi-
ble changes for the failed test. For testTransfer(), all the re-
sponsible changes are number 1, 2, 4, 11, 12, 13, 14, 15, and 16.
From these nine changes, AutoFlow generates two Atomic-Change-
Chains, in which the first chain includes changes 1, 2, and 4; and
the second chain includes others. The Atomic-Change-Chains are
fed as inputs of the core Three-Phase delta debugging algorithm.
After the first phase, AutoFlow ignores the second chain and out-
puts the first chain as the suspicious one. In the second phase, Aut-
oFlow ranks the atomic changes in the first chain as 2, 1 (ignore
change 4); and identifies the failure-inducing change to be atomic
change 2. In the third phase, AutoFlow takes the statement changes
in atomic change 2 as the input, and finally determines the change
money = money - FEE is the only faulty statement.

Our hybrid approach sketched above can be fully automated and
quite effective. In this example, it locates the faulty changes within
only 7 iterations, reducing the number of tests dramatically from
25 iterations by the original delta debugging.

3. APPROACH
We next present our debugging approach in detail. Our approach

consists of three main components: a change isolation module based
on static change impact analysis (Section 3.1), a change ranking
module based on test execution information (Section 3.2), and a
Three-Phase delta debugging module (Section 3.3).

3.1 Isolating Responsible Changes
Static change impact analysis is used to isolate all the responsible

changes for a specific failed test. As presented in Section 2, our
change impact analysis (presented in full detail in [31, 32]) relies
on the computation of a set of atomic changes, which capture all
source modifications at a method level.

Another core part of our impact analysis approach is the (aspect-
aware) call graph representation [32]. The call graph is constructed
for the failed test to determine all its responsible atomic changes.
The set of responsible atomic changes of a given test includes: (1)
atomic changes contained in the Java code, changes like changed
methods (CM) and added methods (AM) that correspond to a node
in the call graph, and changes like lookup change (LC) that cor-
responds to an edge in the call graph; and (2) the atomic changes

public class Account {
protected double money;
protected Auth auth;
private final double FEE = 2;
public Account(double money, Auth auth)
{ this.money = money; this.auth = auth; }
public double balance(){return money;}
public void debit(double m)
{ if(!auth.login()) return;

money = money - m; }
public void credit(double m)
{ money = money + m; }
public void transfer(Account other, double m) {

if(!auth.login()) return;
other.credit(m);
money = money - m;
if(m<100) {
money = money - FEE;

}
}

}
public class Auth {

private String usr, pwd;
public Auth(String usr, String pwd)
{ this.usr = usr; this.pwd = pwd; }
public boolean login()
{ if(usr.equals("usr") && pwd.equals("pwd"))

return true;
else return false; }

}
public aspect AccountAspect {

pointcut AccountDebit(Account account, double m) :
execution(pubic void Account+.debit(double))
&& target(account) && args(m);
before(Account account,double m):AccountDebit(account,m){

if(account.balance() < m) {
throw new IllegalArgumentException("..."); }}

}
public aspect AuthAspect {
pointcut LoginEntry():execution(boolean Auth.login());
boolean around():LoginEntry() {return true; }

}

Figure 1: An example program

appearing in the aspect code, including changes of adding a new
advice (AEA), changing an advice body (CAB), introducing a new
inter-type declared method (INM) and changing an inter-typed de-
clared method body (CIMB) that correspond to a node in the call
graph. The responsible atomic changes also include the advice
invocation change (AIC) that corresponds to an edge in the call
graph. The whole responsible atomic change set further includes
the transitively prerequisite atomic changes of all above changes.

Our implementation AutoFlow builds static call graphs for failed
tests to soundly identify all responsible changes, but it can also
work with dynamic call graphs generated from the real program
execution trace. After the change impact analysis, we can ignore a
portion of irrelevant changes, and focus on the viable and interest-
ing changes in the following steps.

�Example. The call graph for the failed method testTransfer()
is shown in Figure 4. We use shadows to annotate the modified
method or advice. As we can see, the responsible changes for this
test include atomic changes 11, 12, 13, and 14, which appear on the
graph; and their dependent changes 1, 2, 4, 15, and 16. Therefore,
all responsible changes are: 1, 2, 4, 11, 12, 13, 14, 15, and 16.�
3.2 Ranking Suspicious Changes

The heuristic for ranking responsible atomic changes is based on
the hypothesis that, if an atomic change is covered by a high per-
centage of failed regression tests, it is more likely to be the faulty
one. For each responsible change of a failed test, a score is as-
signed based on the test’s execution information. Then we sort
these changes in descending order based on the score, so that the
change with the highest score gets the top ranking [14]. The higher
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public class AccountTest extends TestCase {
public void testDebit()
{ Account a = new Account(100, new Auth("usr","pwd"));

a.debit(10);
assertTrue(a.balance() == 90); }

public void testCredit()
{ Account a = new Account(100, new Auth("usr","pwd"));

a.credit(10);
assertTrue(a.balance() == 110); }

public void testTransfer()
{ Account a1 = new Account(100, new Auth("usr","pwd"));

Account a2 = new Account(80, new Auth("usr","pwd"));
a1.transfer(a2, 10);
assertTrue(a1.balance() == 90);
assertTrue(a2.balance() == 90); }

}

Figure 2: JUnit tests for the motivating example
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Figure 3: Atomic changes inferred from the source changes.

it ranks, the more likely it may have contributed to the test fail-
ure. We define the score of an atomic change, c, as the following
equation:

score(c) =
%failed(c)

%passed(c) + %failed(c)

In this equation, %failed(c) is a function that returns, as percent-
age, the ratio of the number of failed tests that cover c as a re-
sponsible change to the total number of failed tests in the test suite.
Likewise, %passed(c) is a function that returns, as percentage, the
ratio of the number of passed test cases that cover c as a responsible
change to the total number of passed test cases in the test suite. For
example, if an atomic change is covered by 100% of the failed tests
and 50% of the passed tests, its score will be 2/3.

This heuristic utilizes the result provided by many test executions
instead of only the failed ones. It can help programmers understand
more complex relationships in the system, rather than the limited
information provided by few tests. Unlike the heuristics in [14]
and [19], which will be further discussed in Section 5, our heuristic
utilizes the call graph coverage information instead of statement
profiling to rank suspicious changes at the method level.

�Example. Consider the atomic change 2 and 8 in Figure 3.
Change 2 (FI) is covered by testTransfer which turns out to
fail, and change 8 (CAB) is covered by testDebit which turns
out to pass. Therefore, the scores of changes 2 and 8 are computed
as follows:

score(2) =
1/1

1/1 + 0/2
= 1, score(8) =

0/1

0/1 + 1/2
= 0 �

3.3 Locating Failure-Inducing Changes
We next present the core module, an improved Three-Phase delta

debugging algorithm. Unlike the original delta debugging algo-
rithm, we focus on the responsible changes of a failed test, and
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Figure 4: Call graph for the failed test: testTransfer().

increase the change granularity from coarse method level to fine
statement level in the following phases.

3.3.1 Compute Atomic-Change-Chain
As mentioned in Section 2, there are semantic dependencies be-

tween atomic changes. If an atomic change C1 depends on C2, we
denote C2 as a parent change of C1 and C1 as a child change of
C2. If we apply C1 without C2 to the original program, it will lead
to a syntactically incorrect program.

An Atomic-Change-Chain starts from an atomic change which
does not have a child change and includes all of its transitive par-
ent changes. Like a cause-effect chain, an Atomic-Change-Chain
contains a self-contained set (all changes connected to the start-
ing change) for one specific change. In this phase, we generate all
Atomic-Change-Chains, and pass them to the delta debugging al-
gorithm as inputs. The output result is a minimal set of suspicious
failure-inducing chains.

�Example. The algorithm for computing Atomic-Change-Chain
is quite straightforward. Consider the changes in Figure 3, we com-
pute two Atomic-Change-Chains from changes 2 and 112. As a re-
sult, the first chain includes changes 1, 2, and 4; and the second
chain includes changes 11, 12, 13, 14, 15, and 16.�
3.3.2 Determine Faulty Atomic Changes

After determining the minimum set of faulty Atomic-Change-
Chains, we increase the change granularity to the atomic change
level. In this phase, we treat each atomic change in the faulty
Atomic-Change-Chains as one configuration. We first reduce the
size of the atomic change set by pruning out all the Def-Changes3.
The Def-Changes represent changes of declaring (or deleting) an
empty language element, such as AC (Add Empty Class). Ap-
plying these Def-Changes alone without their corresponding Body-
Changes may be meaningless or even results in syntax errors in
the intermediate program version. Then, a score will be assigned
to each atomic change according to the heuristic defined in Sec-
tion 3.2. In this phase, we employ the delta debugging to iden-
tify all the faulty atomic changes. However, when dividing atomic
changes into subsets in delta debugging, the changes with higher
rank are always applied first.

�Example. Consider the motivating example. After the first
phase of debugging, the second Atomic-Change-Chain including
changes 1, 2, and 4 will be output as the faulty one. Among the
atomic changes in the output chain, change 1 (AF) is regarded as a
Def-Change and will be pruned out. The remaining two changes 2
and 4 will be first ranked and then fed as inputs of delta debugging.
In this example, changes 2 and 4 are only covered by the failed test
2Change 2 and 11 do not have a child change. Note that atomic change 4, 8, 10,
14, and 16 has already been merged into its parents as a buddy change in the change
impact analysis phase. For more details on this point, please refer to [30].
3All Def-Changes include AA, DA, INF, DIF, INM, DIM, AEA, DEA, ANP, DPC,
AF, DF, DM, AC, and DC from Table 1 and 2
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testTransfer, so they have the same score: score(2) = score(4)
= 1. Thus, AutoFlow orders the changes arbitrarily and takes them
as the inputs of delta debugging. At the end of this phase, only
atomic change 2 will be output as the faulty one.�
3.3.3 Find Faulty Statements

After determining the minimum set of faulty atomic changes, our
approach extracts all changed statements from these changes, and
treats each statement as one configuration. Then, again, we use
the original delta debugging to identify a minimum set of faulty
statements as the analysis result.

�Example. Consider the changes in Figure 3, atomic change 2
is output by the end of the second phase as the only faulty change.
AutoFlow then extracts all changed statements (marked by underline
in the transfer method body in Figure 1) and applies them to the
delta debugging algorithm. Finally, statement money = money -
FEE is identified to be the only faulty statement.�

Note that, in this phase, it is likely that several resulting config-
urations (formed by combining the statement changes in an arbi-
trary way) are inconsistent. Therefore, we integrate the extended
dd+ [27] algorithm into our approach to handle such cases. Due to
space limitations, the formal algorithm description and complexity
analysis can be found in our technical report [30].

4. EMPIRICAL EVALUATION
We implemented our approach for both Java and AspectJ pro-

grams in our AutoFlow debugging framework. AutoFlow is built
on top of AJDT [2] and designed as an eclipse [4] plugin. The cur-
rent implementation supports Java 2 SDK v1.5 and AspectJ version
1.5. The implementation details can be found in [29].
4.1 Experiment Setup

Programs Type #Loc #Ver #Me #Tests

XML-Security Java 16800 4 1221 112
Dcm AspectJ 3423 2 249 157

Table 3: Subject Programs

We evaluated our approach on two non-trivial third-party appli-
cations, XML-Security and Dcm. XML-Security [5] is a moderate-
sized Java application that implements security standards for XML.
We obtained several sequential versions with the regression test
suite from the Software Infrastructure Repository (SIR) [11]. The
Dcm application is one of the largest AspectJ benchmarks from the
ajc distribution package [1]. It is also widely used by researchers [24,
25] to evaluate their work. Table 3 lists, for these two subject pro-
grams, the program type (Type), the number of lines of code in the
initial version (#Loc), the number of versions (#Ver), the number
of methods (#Me), and the size of the JUnit test suite (#Tests).

For each subject program, we execute the JUnit tests of version
vn−1 in context of version vn. If a JUnit test fails, we take the
program version vn−1 and vn as well as the test suite as the input
of the AutoFlow to identify the failure-inducing changes.
4.2 Result and Analysis

Case Study 1: XML-Security. It is a challenge to find appro-
priate test data for AutoFlow to simulate the debugging activities.
However, we find one test method testSetOctetStreamGetNod-
eSet1() in class XMLSignatureInputTest passes in its 2nd ver-
sion, but fails in its 3rd version. We use AutoFlow to locate its fail-
ure causes. AutoFlow first computes the atomic changes from the
source code modifications. As shown in Figure 5, there are totally
312 atomic changes between version v2 and v3 (shown in the v3

bar). Then, AutoFlow isolates a set of 60 responsible changes for
the failed test, which only account for 19.2% of the total number.
AutoFlow next assembles 10 Atomic-Change-Chains from these re-
sponsible changes and starts the Three-Phase delta debugging pro-

cedure. After seven iterations, one CM4 change is identified as
the failure-inducing change. After then, AutoFlow extracts three
statement changes from this method change and starts to explore
the faulty statements. Finally, after another three iterations, one
statement change5 has been output as the root of failure. In order
to confirm our result, we comment out this statement change and
re-execute the failed test, which then succeeds. This indicates that
the statement change pinpointed by AutoFlow is a valid one. In
this example, if we apply the original delta debugging directly, it
requires 40 tests in our implementation.

Figure 5: Atomic changes between version pairs.

Figure 6: Debugging log of locating failure-inducing changes.

Case Study 2: Dcm. Though Dcm is among the largest AspectJ
benchmarks available, it has only 3KLOC in the initial version.
The size may affect the scalability of our analysis approach, but
this is not the focus of this case study. The major goal is to ap-
ply our approach to the aspect-oriented features. For this subject
program, we also find one test DCM.DataTest.testTotalDCM()
passes in the 1st version but fails in the 2nd version. Like the
XML-Security experiment, we first compute the atomic changes
between each successive versions. As shown in Figure 5, there are
85 atomic changes between Dcm version v1 and v2. After change
impact analysis, AutoFlow isolates 12 responsible changes for the
failed test. Those 12 changes comprise various kinds of aspec-
tual feature changes, such as AIC, AEA and ANP. Following the
procedures of Three-Phase delta debugging, AutoFlow first con-
structs three Atomic-Change-Chains and identifies two chains con-
taining eight atomic changes to be interfered. These eight suspi-
cious atomic changes are further explored by AutoFlow. Then, two
atomic changes, namely CM (DCM.Data.totalDCM()) and CAB
(DCM.handleGC.AllocFree.after():dataoutput()), are iden-
tified by AutoFlow to be the failure-inducing ones. There are 23
lines of statement changes in these two atomic changes. AutoFlow
extracts them and finally determines two statement changes long
totalDCM = 1 and DCM.Data.decrAllocated(classname) to
be the faulty code. In this example, AutoFlow runs 11 tests to iden-
tify a combination of two faulty statements, which is significantly
less than the original delta debugging (38 tests).
4The body change of methodorg.apache.xml.security.utils.XML-
Utils.circumventBug2650(Document))
5documentElement.setAttributeNS(Constants.Namespac-
eSpecNS, "xmlns", "");
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4.3 Discussion
The debugging log is shown in Figure 6. We can see that Aut-

oFlow isolates one (two) faulty statement(s) from 312 (85) method-
level changes after only 10 (11) tests, in the XML-Security (Dcm)
case study. Compared to the original delta debugging, it signifi-
cantly improves the effectiveness. In the experiment, we find that
change impact analysis plays a crucial role in the debugging pro-
cess, because normally, only a portion of changes (about 20% in
our experiment) would affect the behavior of a specific failed test.
The semantic relationships between atomic changes guarantee the
syntactical correctness of intermediate program versions, avoiding
a large number of inconsistent configurations. The proposed Three-
Phase delta debugging organizes the changes hierarchically and
fastly narrows down the search of suspicious changes. Since the
original delta debugging algorithm handles configuration interfer-
ence cases, even for a combination of multiple faulty changes (like
in the Dcm case), AutoFlow can still find them. Though the cur-
rent implementation of AutoFlow only supports Java and AspectJ
programs, we believe the basic idea of our approach can be applied
to other programming languages, as long as we employ suitable
change impact analysis technique, ranking heuristic, and change
selection strategy. Investigating the applicability of this approach
to other languages is a topic for further research.

Threats to Validity. Like any experimental study, this evalua-
tion also has several limitations which must be considered. As
stated initially, though the subject programs are widely used by re-
searchers, the fault types in XML-Security and Dcm may not be
representative enough. Therefore, we cannot claim the results of
the subject programs can be generalized to arbitrary programs.

On the other hand, threats to internal validity maybe mostly lie
with possible errors in our tool implementation and the measuring
of experiment results. To reduce such threats, we performed several
careful checks. Another threat to internal validity may stem from
our bias to perform the experiment. Though the Java application
XML-Security is a real world application, the AspectJ application
Dcm does not have existing bug records. Therefore, we seed several
faults into the original Dcm program and augment it with a suite of
tests. To reduce the threats of personal bias, we assign different
people to seed faults and develop the test suite. These man-made
faults are kept unknown before applying them to AutoFlow.

Analysis Cost. The analysis performed by AutoFlow runs in
practical time. Our experiment is conducted on a DELL C521 PC
with AMD Sempron 3.0 Ghz CPU and 1.0 GB memory. For the
Java application XML-Security and the AspectJ application Dcm,
the total running time (including compilation time) of our analysis
is 546s and 95s, respectively. We believe the overheads are rea-
sonable as an initial implementation, though there is still room for
further performance optimizations.

5. RELATED WORK
We next discuss some closely related work in areas of fault lo-

calization techniques and delta debugging.
Recently, researchers have proposed many ways [7,12–14,16,17,

19,21,33] to automate the process of searching for faults. Delta de-
bugging [27] is designed to be a general technique to minimize the
suspicious changes for automated debugging. However, as stated
in Section 1, it suffers several performance overheads. Aiming to
improve it, our approach combines several static and dynamic anal-
ysis techniques to fast track failure causes.

Misherghi and Su [17] proposed a hierarchical delta debugging
(HDD) algorithm to improve the effectiveness of delta debugging
to minimize the test inputs. HDD generates orders of magnitude
fewer test cases and scales to very large programs. However, HDD
is mainly concerned with the simplification algorithm of delta de-

bugging instead of the isolation algorithm. HDD works well on hi-
erarchical structured inputs like a program’s abstract syntax tree or
XML document. However, the changes between software versions
may not be a good candidate for HDD. For example, when adding
several fields or methods to an existing class, there are no hierar-
chical relationships between these changes. Instead, the logical de-
pendencies between software changes (captured by dependencies
between atomic changes) may be more useful to assist fault local-
ization. In this work, we explore the semantic relationship between
atomic changes to facilitate the process of debugging.

There is also a lot of work [18, 22, 35] devoted to change impact
analysis and its application to fault diagnosis. Ryder et al. [22] first
use atomic change representations to perform change impact analy-
sis for Java programs. Our previous work [32] is an extension of the
concept of atomic changes to AspectJ programs. Crisp [6], a de-
bugging tool for Java, is based on the atomic change representation
to find fault locations by manually constructing intermediate pro-
gram versions. Stoerzer [23] et al. also presented a classification
tool JUnit/CIA built on JUnit and Chianti [20] which classifies Java
atomic changes with respect to the tests they affect to identify the
likely source edits of test failure. Unlike our approach, the explo-
ration of fault using these tools requires profound domain knowl-
edge of the target program (select the suspected changes based on
a user’s decision) and highly involved manual efforts (may need to
select, apply, and roll back suspected changes repeatedly until find
the faulty one), and therefore can not be fully automated.

In [19], Ren and Ryder proposed a heuristic to rank Java program
edits for fault localization. Their heuristic relies on the static infor-
mation (like the number of ancestors of a specific node) provided
by the call graph of one specific failed test. They only consider the
CM (change method) change in Java programs. In our work, we
utilize the dynamic test execution information of both passing and
failing test and present a heuristic based on the testing coverage.
Jones and Harrold [14] proposed to visualize testing results to ease
the fault localization. They instrumented each statement in a pro-
gram and defined a score for it. Jeffrey et al [9] proposed a value
profile based approach for fault localization, and their approach
outperforms [14] in the empirical evaluation. However, their work
aims to use the dynamic information to find suspicious statements
during test execution and has not taken the software changes into
consideration. While our work uses analysis of aspect-aware call
graphs to get the coverage information for each atomic change (that
is, at method-level), to facilitate the fault localization process.

6. CONCLUDING REMARKS
In this paper, we presented a hybrid approach to effectively lo-

cate failure-inducing changes in software evolution. Our approach
combines both static and dynamic analysis techniques for fault lo-
calization. We also presented AutoFlow, a general automatic de-
bugging framework for Java and AspectJ programs. The experi-
ments on both Java and AspectJ applications confirm that this hy-
brid approach can significantly reduce the number of tests to run.

We recommend that this hybrid approach be an integrated part
of the delta debugging technique; each time a regression test fails,
irrelevant changes should be pruned out and a delta debugging that
hierarchically organizes the responsible changes with proper prior-
ity should be started to resolve the regression cause.

As our future work, we plan to examine alternative techniques
like dynamic program slicing [34] to improve delta debugging. We
also intend to investigate the cost/effectiveness tradeoffs when in-
corporating program analysis techniques into debugging tasks.
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