
AutoFlow: An Automatic Debugging Tool for AspectJ Software

Sai Zhang, Zhongxian Gu, Yu Lin, Jianjun Zhao
School of Software

Shanghai Jiao Tong University
800 Dongchuan Road, Shanghai 200240, China

{saizhang, ausgoo, linyu1986, zhao-jj}@sjtu.edu.cn

Abstract

Aspect-oriented programming (AOP) is gaining popu-
larity with the wider adoption of languages such as As-
pectJ. During AspectJ software evolution, when regression
tests fail, it may be tedious for programmers to find out the
failure-inducing changes by manually inspecting all code
editing. To eliminate the expensive effort spent on debug-
ging, we developed AutoFlow, an automatic debugging tool
for AspectJ software. AutoFlow integrates the potential of
delta debugging algorithm with the benefit of change im-
pact analysis to narrow down the search for faulty changes.
It first uses change impact analysis to identify a subset of re-
sponsible changes for a failed test, then ranks these changes
according to our proposed heuristic (indicating the likeli-
hood that they may have contributed to the failure), and
finally employs an improved delta debugging algorithm to
determine a minimal set of faulty changes. The main fea-
ture of AutoFlow is that it can automatically reduce a large
portion of irrelevant changes in an early phase, and then
locate faulty changes effectively.

1 Introduction
Programmers often spend a significant amount of their

time debugging programs in order to reduce the number of
bugs in software releases. Typically, when regression tests
fail unexpectedly after a long session of editing, the search
of suspicious changes is an arduous, highly manual involved
and time-consuming process. The high cost of fault local-
ization causes in software evolution has motivated the de-
velopment of automatic debugging techniques such as [1,2].

Aspect-Oriented Programming (AOP) [3] has been pro-
posed as a technique for improving separation of concerns
in software design and implementation. AspectJ, one of the
most widely used AOP languages, is designed as a seam-
less extension to Java. The new features of AspectJ pro-
gram present new challenges for program analysis tasks.
When designing programming tool supports, besides the
object-oriented features like sub-typing and dynamic dis-
patching, the unique aspectual constructs like advice, point-

Figure 1. Overview structure of AutoFlow.

cut and inter-type declaration should also be handled appro-
priately. Though the executable code of AspectJ software
is pure Java bytecode, the existing debugging techniques
for Java can not be applied directly to the bytecode, since
there is a significant discrepancy between AspectJ source
code and the woven bytecode. Therefore, an alternative
approach taken in AutoFlow implementation is to perform
source-code-level static analysis for AspectJ programs.

When a regression test fails unexpectedly after a ses-
sion of source changes, AutoFlow works as follows, first
it decomposes the code modifications into a set of atomic
changes (at method-level); then it employs change impact
analysis to isolate a subset of responsible changes for that
failed test; in the third step, AutoFlow ranks these changes
according to our proposed heuristic, and finally employs an
improved delta debugging algorithm to determine a mini-
mal set of faulty changes.

2 AutoFlow Tool
AutoFlow [6] is implemented on top of the ajc compiler

and designed as an eclipse plugin. The overview structure
of AutoFlow is shown in Figure 1. We next present the
implementation details of its four main components.

Change Impact Analysis Module. We imple-
mented the change impact analysis module based on our
Celadon [7] framework. This module decomposes the

Source code V1 and V2
with regression tests

Change
Impact
Anaysis
Module

Heuristic
Ranking
Module

Testing Data
Col lection

Module

Delta
Debugging

Module

Atomic
Changes

Ranked
Changes

Testing
Result Data

Faulty
Changes

978-1-4244-2614-0/08/$25.00 © 2008 IEEE ICSM 2008470

source editing into a set of atomic changes [4, 8]. The
atomic changes generated in this module are used to reflect
the semantic differences between the initial and updated
software version. There are also inter-dependencies be-
tween atomic changes, which will be future explored to con-
struct compliable intermediate program versions for isolat-
ing failure-inducing changes. For the failed test, this anal-
ysis module also identifies a subset of responsible changes
based on the aspect-aware call graph construction. For the
detail explanation of our change impact analysis approach
used in this module, please refer to [8].

Testing Data Collection Module. This module ex-
ecutes all the regression tests, including both passed and
failed ones, in context of the updated software version, and
collects the testing result. It also constructs static AspectJ
call graph for each test case. The collected testing result
and the constructed call graphs are passed to the heuristic
ranking module as inputs.

Heuristic Ranking Module. The responsible changes
for the failed test and the testing data collected are fed into
this module. We use the following heuristic to rank all re-
sponsible changes, to indicate the likelihood that they may
contribute to the failure:

score(c) =
%failed(c)

%passed(c) + %failed(c)

In this equation, for one specific responsible change c,
%failed(c) is a function that returns, as percentage, the ra-
tio of the number of failed tests that cover c as an affecting
change1 to the total number of failed tests in the test suite.
Likewise, %passed(c) is a function that returns, as a per-
centage, the ratio of the number of passed test cases that
cover c as an affecting change to the total number of passed
test cases in the test suite.

This heuristic utilizes the result provided by many test
case executions instead of only the failed test. It can help
the developer understand more complex relationships in the
system, instead of the limited information provided by few
test cases.

Delta Debugging Module. The responsible changes af-
ter ranking are passed to this module. AutoFlow employs
the delta debugging algorithm to automatically determine a
minimal subset of faulty changes. By utilizing all above in-
formation, the delta debugging algorithm used in this mod-
ule improve the effectiveness of the original algorithm [5]
in the following aspects:

• Searching Space. The original delta debugging al-
gorithm searches the entire set of source changes for
identifying the faulty ones. However, in our approach,
for a specific failed test, a large set of uncorrelated
changes can be ignored by change impact analysis, and
we only focus on the responsible changes.

1As defined in [8], the set of affecting changes that affect a given test
includes the transitively prerequisite of all atomic changes appearing on its
call graph.

• Change Selection. Delta debugging selects and ap-
plies the changes (the configurations) randomly. How-
ever, in our approach, the changes that are most likely
to contribute to the failure are ranked highest and ap-
plied first.

• Handle Inconsistence. One of the most important
practical problems of delta debugging is inconsistent
configurations. When combining changes in an arbi-
trary way, it is likely that several resulting configura-
tions are inconsistent. However, in our implementa-
tion, the inter-dependencies between atomic changes
guarantee the syntactic correctness of the constructed
intermediate program versions2.

AutoFlow have been applied to several AspectJ bench-
marks to evaluate its ability for identifying different kinds
of bugs [6]. For most cases, AutoFlow outputs the correct
result in form of faulty atomic changes. Since the delta de-
bugging algorithm is able to handle configuration interfer-
ence situations when locating faults, therefore, even there
is a combination of multiple failure-inducing changes, Aut-
oFlow can still find them.

Acknowledgements This work was supported in part by
National High Technology Development Program of China
(Grant No. 2006AA01Z158), National Natural Science
Foundation of China (NSFC) (Grant No. 60673120), and
Shanghai Pujiang Program (Grant No. 07pj14058).

References

[1] O. Chesley, X. Ren, and B. G. Ryder. Crisp: A debugging tool for
Java programs. In Proc. International Conference on Software Main-
tenance (ICSM’2005), Budapest, Hungary, September 27–29, 2005.

[2] J. Jones, M. Harrold, and J. Stasko. Visualization of test information
to assist fault localization. In In Proc. Int’l Conf. Softw. Eng., 2002.

[3] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. In Proc. 11th
ECOOP, pages 220–242. 1997.

[4] X. Ren, F. Shah, F. Tip, B. Ryder, and O. Chesley. Chianti: A
tool for change impact analysis of Java programs. In Proc. Object-
Oriented Programming Systems, Languages, and Applications (OOP-
SLA 2004), pages 432–448, Vancouver, BC, Canada, October 26–28,
2004.

[5] A. Zeller. Yesterday, my program worked. today, it does not. why? In
Proc. 7th European software engineering conference held jointly with
the 7th ACM SIGSOFT international symposium on Foundations of
software engineering, pages 253–267, London, UK, 1999.

[6] S. Zhang, Z. Gu, Y. Lin, and J. Zhao. AutoFlow: An automatic debug-
ging framework for AspectJ programs. Technical Report SJTU-CSE-
TR-08-01, Center for Software Engineering, SJTU, Jan 2008.

[7] S. Zhang, Z. Gu, Y. Lin, and J. Zhao. Celadon: A change impact anal-
ysis tool for Aspect-Oriented programs. In Proc. 30th International
Conference on Software Engineering (ICSE 2008 Companion), May
2008.

[8] S. Zhang, Z. Gu, Y. Lin, and J. Zhao. Change impact analysis for
AspectJ programs. In Proc. 24th IEEE International Conference on
Software Maintenance, Sep 2008.

2Since when applying one atomic change to the original program, its
syntactic dependent changes will also be applied automatically.

471

