
Frequency Estimation of Virtual Call Targets

for Object-Oriented Programs

Cheng Zhang1, Hao Xu2,�, Sai Zhang3, Jianjun Zhao1,2, and Yuting Chen2

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University
2 School of Software, Shanghai Jiao Tong University

{cheng.zhang.stap,steven xu,zhao-jj,chenyt}@sjtu.edu.cn
3 Computer Science & Engineering Department, University of Washington

szhang@cs.washington.edu

Abstract. The information of execution frequencies of virtual call tar-
gets is valuable for program analyses and optimizations of object-oriented
programs. However, to obtain this information, most of the existing ap-
proaches rely on dynamic profiling. They usually require running the
programs with representative workloads, which are often absent in prac-
tice. Additionally, some kinds of programs are very sensitive to run-time
disturbance, thus are generally not suitable for dynamic profiling. There-
fore, a technique which can statically estimate the execution frequencies
of virtual call targets will be very useful.

In this paper we propose an evidence-based approach to frequency es-
timation of virtual call targets. By applying machine learning algorithms
on the data collected from a group of selected programs, our approach
builds an estimation model to capture the relations between static fea-
tures and run-time program behaviors. Then, for a new program, the
approach estimates the relative frequency for each virtual call target by
applying the model to the static features of the program. Once the model
has been built, the estimation step is purely static, thus does not suf-
fer the shortcomings of existing dynamic techniques. We have performed
a number of experiments on real-world large-scale programs to evaluate
our approach. The results show that our approach can estimate frequency
distributions which are much more informative than the commonly used
uniform distribution.

1 Introduction

Most of the object-oriented programming languages provide the virtual call
mechanism to support polymorphism. While enhancing the modularity and ex-
tensibility in both design and implementation, virtual calls also complicate the
static call graphs by adding extra branches at the call sites. As a result, call
graph-based program analyses and optimizations may become less effective. In
addition, virtual calls may cause significant performance overhead, because the
� He is currently a graduate student at Department of Computer Science, University

of Southern California.

M. Mezini (Ed.): ECOOP 2011, LNCS 6813, pp. 510–532, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Frequency Estimation of Virtual Call Targets for Object-Oriented Programs 511

exact callees must be determined at run-time by selecting them from all the
candidates based on the receiving objects (this process is often called dynamic
binding). Therefore, it is important to resolve virtual calls at compile time or to
obtain information about the execution frequencies of the targets (i.e., callees)
for the unresolved virtual calls.

An empirical study [16] has shown that the distribution of execution frequen-
cies of virtual call targets is highly peaked, that is, a small number of methods
are frequently called in most of the run-time virtual calls. Thus it is rewarding to
find the most frequently executed targets. Various dynamic profiling techniques
are developed to explore the frequency distribution or relative frequencies of vir-
tual call targets. Some of them [12] [16] [19] [14] [21] achieve high accuracy with
relatively low overhead. However, in order to generate useful profiles, most of
the dynamic techniques require driving programs with representative workloads,
which are often absent, especially for newly developed programs. Moreover, dy-
namic techniques are usually intrusive in that they have to instrument programs
to collect information, whereas some kinds of programs (e.g., multi-thread pro-
grams) may be extremely sensitive to run-time disturbance. In these cases, a
static technique with acceptable accuracy could be a preferable alternative.

In this paper, we propose Festival, an evidence-based approach to f requency
estimation of virtual call targets. The underlying assumption of Festival is that
developers’ design intentions, which cause the imbalance of usage of different vir-
tual call targets, can be revealed by examining a group of static program-based
features. Festival consists of two phases: 1) model building and 2) estimation. In
the model building phase, Festival selects a set of existing programs with repre-
sentative workloads, extracts some static features, and runs the programs to get
the dynamic profiles for their virtual call targets. Based on the collected data,
Festival uses machine learning algorithms to discover the relationship between
the execution frequencies and the static features. The relationship is represented
as an artificial neural network. As a prerequisite for model building, we assume
that the programs and their representative workloads are available. This as-
sumption is reasonable, because there exist numerous object-oriented programs,
which have been used in practice for years. The accumulated workloads for such
programs are probably representative. In the estimation phase, for a new pro-
gram, Festival extracts the same set of features from it and uses the model to
estimate the relative frequencies of the virtual call targets in the program. It is
worth noting that, once the model has been built, the estimation phase is purely
static. We have implemented a prototype of Festival and performed a set of ex-
periments on the DaCapo benchmark suite [7]. The experimental results show
that the estimated frequency distributions are significantly more informative
than the uniform distribution which is commonly used in static analyses.

The main contributions of this work can be summarized as:

1. Festival, the first evidence-based approach we are aware of to estimate fre-
quencies of virtual call targets for object-oriented programs. It can be a good
complement to existing dynamic techniques. As will be discussed in Section
3, a variety of client applications may benefit from our approach.

512 C. Zhang et al.

2. An evaluation conducted to validate the effectiveness of our Festival ap-
proach. It consists of a comprehensive group of experiments, which show the
estimation performance of Festival from various aspects.

The rest of this paper is organized as follows. Section 2 uses an example to give
a first impression of the static features. Section 3 discusses a number of potential
applications of our Festival approach. Section 4 describes the technical details
of the approach. Section 5 shows the experimental results. Section 6 compares
Festival with related work and Section 7 concludes the paper and describes our
future work.

2 Motivating Example

In this section we use a real-world example to illustrate some of the features
used in our approach. The features are program-based and easy to extract using
static analysis. Nevertheless, we believe that they are related to the run-time
execution frequency of virtual call targets.

The code segments shown in Figure 1 are excerpted from ANTLR (version
2.7.2) [1], a parser generator written in Java. From the code, we can see that
class BlockContext contains three fields and three methods, while its subclass
TreeBlockContexthas only one field and one method, addAlternativeElement,
which overrides the implementation provided by BlockContext. The virtual call
of interest is at line 6. The method context (whose definition is omitted for
brevity) has a return type BlockContext. Thus the virtual call has two possible
targets: one is the method addAlternativeElement defined in BlockContext
and the other is the one defined in TreeBlockContext. By running ANTLR
using the workload provided in DaCapo benchmark (version 2006-10-MR), we
obtained the dynamic profiles of these two targets and found that the execution
frequency of the method defined in BlockContext is about ten times higher than
that of the method defined in TreeBlockContext. But what if we cannot run
the program, say, because the workload is unavailable? Can we make a good
guess at the relative frequencies of these two targets?

If we analyze the program source code, some informative evidences can be dis-
covered. First, TreeBlockContext is a subclass of BlockContext. As a general
rule of object-oriented design, the subclass (i.e., TreeBlockContext) is a special-
ized version of the superclass (i.e., BlockContext). Second, because the method
addAlternativeElementhas a concrete implementation in BlockContext rather
than being abstract, it is probably designed to provide common functionalities,
while the method in TreeBlockContext is designed for special cases. Third, if
we explore the calling relations between relevant methods, we will find that the
method defined in TreeBlockContext calls its super implementation (the call is
at line 36 in Figure 1). It indicates that TreeBlockContext delegates a part of its
responsibility to its superclass. At last, there are three fields and three methods
defined in class BlockContext, while class TreeBlockContext has only one field
and one method. The fact that BlockContext has higher complexity may also
show its relative importance. Based on these evidences we are likely to consider

Frequency Estimation of Virtual Call Targets for Object-Oriented Programs 513

1 public class MakeGrammar
2 extends DefineGrammarSymbols {
3 protected void addElementToCurrentAlt (
4 Alternat iveElement e) {
5 . . .
6 context () . addAlternat iveElement (e) ; }
7 }
8

9 class BlockContext {
10 Alte rnat iv eBlock b lock ;
11 int altNum ;
12 BlockEndElement blockEnd ;
13

14 public void addAlternat iveElement (
15 Alternat iveElement e) {
16 cu r r en tA l t () . addElement (e) ;
17 }
18

19 public Al t e rna t i v e cur r entA l t () { . . . }
20 public Alternat iveElement
21 currentElement () { . . . }
22 }
23

24 class TreeBlockContext
25 extends BlockContext {
26 protected boolean
27 nextElementIsRoot = true ;
28

29 public void addAlternat iveElement (
30 Alternat iveElement e) {
31 TreeElement t r e e =(TreeElement) b lock ;
32 i f (nextElementIsRoot) {
33 t r e e . root=(GrammarAtom) e ;
34 nextElementIsRoot = fa l se ;
35 } else {
36 super . addAlternat iveElement (e) ;
37 }
38 }
39 }

Fig. 1. Code segments from ANTLR 2.7.2

the method in BlockContext as the major one, and thus correctly predict a
higher frequency for it.

The example presents the intuition that design intentions can be revealed by
analyzing static features. This strongly motivates us to use such kind of features
to estimate relative frequencies of virtual call targets. However, it is still challeng-
ing to tell how a specific feature may indicate the frequencies. Moreover, when
there is a large amount of feature data extracted (especially for large programs),

514 C. Zhang et al.

different features may lead to contradictory judgements in some cases. Conse-
quently, the problem of how to make optimized estimations based on such kind
of features motivates us to leverage the power of machine learning techniques,
which are devised to discover useful knowledge from data.

3 Potential Applications

Various techniques dependent on frequency information of virtual call targets
may benefit from Festival. On one hand, traditional profile-guided techniques
can use the estimated profiles when dynamic profiles are unavailable. It makes
them applicable in more situations. On the other hand, static techniques may
achieve better performance by using more accurate information.

Program optimizations usually use dynamic profiles to help make economic
optimization decisions. Nevertheless, when dynamic profiling is inappropriate,
Festival can be a good substitution. Sometimes it may be integrated into the
optimization process more conveniently than dynamic profilers. For instance, as
shown in Figure 2, when performing the class test-based optimization [16], the
compiler can insert a test for the dominant class (i.e., the class which defines
the most frequently executed target method) and statically determine the target
method in the successful branch. Since the test is mostly successful at run-time,
the overhead of dynamic binding can be reduced. If Festival is used to identify
the dominant class, this optimization can be performed without running the
program.

Before opt imizat ion :
TypeA a = . . . ;
a . method () ;

After op t imizat ion :
TypeA a = . . . ;
i f (a instanceof DominantSubtypeOfA){

((DominantSubtypeOfA) a) . method () ;
} else {

a . method () ;
}

Fig. 2. An example of code optimization

Another application of Festival may be the probabilistic program analyses.
Besides computing the must or may behaviors of programs, probabilistic pro-
gram analyses [5][18] also show the likelihood of each may behavior’s occurrence.
For example, the probabilistic points-to analysis [18] assigns a frequency distri-
bution to each points-to set indicating which memory locations are more likely
to be the target of the pointer. Since the existing work focuses on C language,
it performs analysis based on control-flow graphs which do not involve virtual
calls. If the work is extended to handle object-oriented languages (e.g., Java),

Frequency Estimation of Virtual Call Targets for Object-Oriented Programs 515

it can use Festival, at the beginning of its analysis, to allocate probabilities to
virtual call targets instead of assuming a uniform frequency distribution.

For static bug finding tools (e.g., Findbugs [17]), high false positive rate is a
major obstacle to their applications. Thus alert ranking methods are introduced
to reduce the effort for finding real warnings. Some methods (e.g., [9]) rank alerts
in terms of the execution likelihood of program elements. They calculate the
likelihood by propagating probabilities along the edges of control-flow graphs.
Using the frequency information of virtual call targets, the propagation may be
more accurate when it has to branch at virtual call sites. Then better results of
alert ranking may be obtained.

In summary Festival can be useful to call graph-based analyses and optimiza-
tions that deal with object-oriented programs. While the frequency estimation
only needs static features of programs, a model must be built beforehand. In the
next section, we will describe the technical details.

training
program s

preproc ess ing
s tatic call g rap h s feature

extrac tion

s tatic features

dynam ic
profiling

dynam ic profiles
m odel training es tim ation

m odel

frequenc y
es tim ation

results

(a) the m odel building phase of Fes tival

new
program s

preproc ess ing
s tatic call g rap h s feature

extrac tion

s tatic features

es tim ation
m odel

(b) the es tim ation phase of Fes tival

Fig. 3. The architecture of Festival which consists of two phases. In the first phase,
static features and dynamic profiles are used to build the estimation model. In the sec-
ond phase, only static features are extracted from new programs to perform frequency
estimation. The shaded elements stand for the steps or entities involved in both phases.

4 Approach

Figure 3 shows the architecture of Festival, which consists of two phases: a) model
building and b) estimation. At the beginning of the model building phase, a set of
selected programs are preprocessed to construct their static call graphs. Then a

516 C. Zhang et al.

group of static features are extracted based on the call graphs and the programs’
source code. Meanwhile dynamic profiling is performed to get dynamic profiles
for these programs. In the end of this phase, the estimation model is built based
on the static features and dynamic profiles using machine learning algorithms.
Once the model has been built, it will be repeatedly used afterwards. In the
estimation phase, static features are extracted, in the same way, from the new
programs which are not used in model building. Then the relative frequencies
for virtual call targets are estimated by applying the estimation model to the
features.

4.1 Preprocessing

The purpose of the preprocessing step is to construct precise static call graphs
for feature extraction. In this step, we use the points-to analysis provided by the
Spark framework [20] to compute the types of objects that may be referenced
by each variable. Based on the type information of the receiver variable, the set
of possible targets for each virtual call can be computed more precisely than
traditional algorithms used for call graph construction (e.g., CHA [13]). As a
result, a number of single-target virtual calls are resolved before the subsequent
steps. The preprocessing step enables our approach to focus on real multi-target
virtual calls1 in order to handle large-scale programs. Hereafter the term “virtual
call” means multi-target virtual calls, unless we explicitly state that a virtual
call is single-target.

4.2 Static Feature Set

A static feature can be viewed as a specific measure used to capture one charac-
teristic of a virtual call target. Thus different targets may have different values
for the same feature. We use 14 static features (as shown in Table 1) to charac-
terize virtual call targets from various aspects, including type hierarchy, calling
relation, naming style, program complexity, etc.

Type hierarchy features. Features 1 to 5 are designed to represent information
about the type hierarchy of the classes in which the target methods are defined.
Hereafter we call such a class as a target class and all the target classes of a
virtual call comprise the target class set (of that virtual call). For a specific
virtual call site, the receiver variable has its explicit type (we call it the called
type) and each target class must be either the called type itself or a subtype of
the called type. Figure 4 shows the class diagram of an example for illustrating
the five features related to type hierarchy. As shown in the figure, A is an interface
which has three implementers B, C, and D. Class D extends class C and class C
implements interface F which has no inheritance relationship with interface A.
In addition, classes B, C, and D all have their own implementations of method m.
Suppose that at a call site the method m is called on a variable of type A. In this
case, the called type is A and the target class set is TC(A) = {B, C, D}.
1 Since the problem of points-to analysis is undecidable in general, some real single-

target virtual calls may still be regarded as multi-target.

Frequency Estimation of Virtual Call Targets for Object-Oriented Programs 517

Table 1. Static features used in Festival

Number Feature Name Feature Description

1 Type Distance the number of levels of subtyping from the
called type to the target class

2 Subclass in TC the number of subclasses of the target class
in the target class set

3 Superclass in TC the number of superclasses of the target class
in the target class set

4 Subtree Size the number of subclasses of the target class
in the whole program

5 Number of Ancestors the number of supertypes of the target class
in the whole program (except for library types)

6 Does Call Super whether the target method calls its super
implementation (yes or no)

7 Number of Callers the number of methods which call the target method

8 Package Depth the depth of the package of the target class
9 Name Similarity the number of classes whose names are similar to

that of the target class

10 Number of Methods the number of methods defined in the target class
11 Number of Fields the number of fields defined in the target class

12 Is Abstract whether the target class is abstract (yes or no)
13 Is Anonymous whether the target class is anonymous (yes or no)
14 Access Modifier the access modifier of the target class

(public, protected, private, default)

Feature 1 (type distance) measures the distance between a target class and the
called type, that is, it records the number of edges on the path between the corre-
sponding nodes on the class diagram. If there is more than one path, the shortest
path will be used for this feature. In the example, the feature value of both B and
C is 1, while that of D is 2. A possible heuristic may be that the target method
whose class has shorter distance to the called type will have higher execution fre-
quency, since the target class is more general and likely to be designed for handling
common cases. Features 2 (subclass in TC) and 3 (superclass in TC) encode the
inheritance relations among the target classes in the same target class set. For
example, C has the values 1 and 0 for feature 2 and feature 3, respectively, because
C is the superclass of D which also belongs to TC(A) and C has no superclass in
TC(A). Meanwhile, as there is no subclass or superclass of B in TC(A), B has the
value 0 for both of the features. Sometimes target classes are “parallel” to each
other, that is, there are no inheritance relations between them, such as B and C.
Thus, for each target class, we use features 4 (subtree size) and 5 (number of ances-
tors) to count the numbers of its subclasses and supertypes in the whole program
so that the relative importance of the “parallel” target classes can be character-
ized. In the example, the values of features 4 and 5 for B are 0 and 1, while they are
1 and 2 for C. Note that library types (e.g., java.lang.Object) are not counted
in these two features.

518 C. Zhang et al.

Fig. 4. An example class diagram

Call graph features. Similar to type hierarchy, calling relations may also pro-
vide hints to design intentions. Thus two of the features are based on call graph.
Feature 6 (does call super) shows whether the target method calls the imple-
mentation of the superclass. If the target method just overrides its super imple-
mentation, it is not so perceivable which of the implementations is designed to
take more responsibility. On the contrary, as discussed in Section 2, if the target
method calls its super implementation, it is very likely that it delegates a part or
all of its job to the callee. As a result, the super implementation may have much
higher execution frequency. The other call graph feature, feature 7 (number of
callers), tries to indicate the target method’s popularity in the scope of the whole
program. The intuition is that the more callers a target method has, the more
popular it is. High popularity means high probability for the method to be a
central part of the program, which may result in high execution frequency of the
method in run-time virtual calls. Note that feature 7 counts in all the methods
that explicitly call the virtual call target. In other words, its value is equal to
the number of incoming edges of the virtual call target in the static call graph.
Among these call graph edges, some represent resolved (single-target) virtual
calls, while others represent unresolved (multi-target) virtual calls. In general,
we focus on the latter, that is, we record (during dynamic profiling) and estimate
execution frequencies only at the unresolved call sites. However, in feature 7, we
take into account both resolved and unresolved virtual calls to a target method
in order to characterize its popularity.

Naming style features. In practice several naming conventions are used to
organize program elements in terms of their functionalities. A typical example
is the name space mechanism provided in various programming languages. In
Java, where name spaces are specified by package names, the depth of pack-
age may indicate the specialty of functionality of the classes in the package.
Therefore, feature 8 (package depth) is designed to represent this characteristic.
From another viewpoint on naming style, feature 9 (name similarity) counts the
number of classes whose names are similar to that of the target class. If some
classes have similar names, they may collaborate with each other to accomplish

Frequency Estimation of Virtual Call Targets for Object-Oriented Programs 519

the same task. The more classes involved, the more important the task may be.
Again the relative importance can be used to estimate execution frequencies.
When computing the value of feature 9 for a given target class, we find similar
class names in the following steps:

1. Find the longest common suffix of the names of the classes in the target class
set.

2. Identify the special prefix for the given target class by removing the longest
common suffix from its name.

3. Within the whole program, the class names that begin with the special prefix
are considered as similar to the name of the target class.

Suppose, for a specific virtual call, there are two target classes WalkingAction
and DrivingAction. Then the longest common suffix is “Action” and the special
prefix is “Walking” for WalkingAction. Therefore, the number of classes (all
over the program) whose names begin with “Walking” is recorded as the value
of feature 9 for the target method defined in WalkingAction. Note that library
classes are not taken into consideration during the computation, because their
names usually do not indicate the design of application classes.

Complexity features. In some cases, program complexity metrics can be used
to represent the importance of a program element. Currently we use two simple
metrics, features 10 (number of methods) and 11 (number of fields), to measure
the complexity of the target classes, because these two features are easy to
extract and have satisfactory predictive power. It is worth noting that we do
not add complexity of inner classes or anonymous classes to their outer classes,
because we believe they are less coherent to the outer classes than the member
methods and fields. We have also tried other common metrics (e.g., line of code),
but found them less indicative. In our future work, we are planning to investigate
some more complex metrics, such as the depth of nesting loops and the number
of program paths.

Other features. Features 12 (is abstract), 13 (is anonymous), and 14 (access
modifier) are mainly about surface properties of the target class. These features
are used to capture design intentions from aspects other than the aforementioned
ones. For example, a class is defined as abstract (instead of an interface) probably
means that it provides some method implementations that will be reused by its
subclasses. Thus feature 12 may be useful when we investigate the frequencies
of the implemented methods.

In general the static features are selected to represent evidences which are
supposed to be indicative of execution frequencies. A variety of heuristics may be
proposed based on these features. Nevertheless, counterexamples may be found
against each heuristic by checking the dynamic profiles, and there may also
be contradictions between indications of different features. Thus we use machine
learning techniques to analyze the feature data and discover relatively consistent
knowledge in order to make efficient frequency estimation.

520 C. Zhang et al.

4.3 Estimation Model

We formulate the frequency estimation problem as a supervised classification
problem [24] in machine learning. The task of classification is to determine which
category (usually called class) an instance belongs to, based on some observable
features of the instance and a model representing the existing knowledge. A
classification problem is said to be supervised when the model is trained (i.e.,
built) using instances (called training instances) whose classes have already been
specified. A typical example of supervised classification is to predict the weather
condition (sunny, cloudy, or rainy) of a specific day based on some measures
(temperature, humidity, etc.) of that day and a forecast model derived from
historical weather record. In Festival, we build a model to classify each virtual
call target as frequent or infrequent and use the predicted probability of being
frequent as the estimated frequency.

In essence a model is a parameterized function, which represents the relations
between its input and output. In Festival, for a specific virtual call target, the
input of the estimation model is the values of the target’s static features, and the
output is the estimated frequency for the target. Therefore, the estimation model
of Festival correlates static features with actual frequencies, providing a way to
estimate unknown frequencies of new targets on the basis of the targets’ static
features. A key assumption of Festival is that the relations between static features
and dynamic behaviors of virtual calls are stable across different programs. In
other words, we can build a model based on some programs and use it to estimate
frequencies for others.

In order to build the estimation model, we first select a set of programs (called
training programs) and extract their values for the static features described in
Section 4.2. Then we instrument the training programs at each virtual call site
and run them with their representative workloads. The run-time execution count
of each target is recorded during the execution.2 Since the workloads are repre-
sentative, the execution counts can be used as the real execution frequencies of
the targets. When both static features and dynamic profiles have been obtained
for training programs, we are ready to build the model.

During model building, each virtual call target corresponds to an instance
which is represented as a vector < f1, f2, f3, ..., f14, c >, where fi is the value of
the ith feature and c is the recorded execution count. We have to process the
instance data to make them fit for our approach. Because targets from different
virtual calls are used together for model training, their feature values should be
measured relatively within each virtual call. Thus we normalize the feature values
within all the targets of the same virtual call. For example, if the values of feature
1 for three targets (of a specific virtual call) are fx

1 , fy
1 , and fz

1 , then they will
be normalized as fx

1
max{fx

1 ,fy
1 ,fz

1 } , fy
1

max{fx
1 ,fy

1 ,fz
1 } , and fz

1
max{fx

1 ,fy
1 ,fz

1 } , respectively.
Moreover, to specify the class of each instance, we order the targets of each

2 More specifically, what we record is the number of times a method becomes the
actual target of its corresponding virtual call, rather than the total number of times
a method is called.

Frequency Estimation of Virtual Call Targets for Object-Oriented Programs 521

o u tp u
t u n it

h id d en
u n it 0

h id d en
u n it 1

h id d en
u n it k

. ..

in p u t
f1

in p u t
f2

in p u t
fn

. ..

f(x0) f(xk)

f(x)

f(x1)

input
(static features)

hidden layer

output
(estimated frequency)

Fig. 5. The multilayer perceptron used in frequency estimation. Each input fi corre-
sponds to a static feature of a virtual call target and the output f(x) is used as the
estimated frequency of the target.

virtual call with respect to their execution counts in a descending order. Then
we assign class 1 (means “frequent”) to the top 20% targets and class 0 (means
“infrequent”) to the others. When a virtual call has less than 10 targets, we assign
class 1 to the top one target and class 0 to the others. After the data processing,
the instances are transformed into the form < f

′
1, f

′
2, f

′
3, ..., f

′
14, L >, where L ∈

{1, 0} and f
′
i is the normalized value of fi. Then we use the processed instances

to train a multilayer perceptron [24], which will be used as our estimation model.
A multilayer perceptron is a kind of artificial neural network which is illus-

trated in Figure 5. In the multilayer perceptron, the output of a node i in the
hidden layer is described by

f(xi) =
1

1 + e−xi

where xi is the weighted sum of its inputs, that is, xi = wi0+wi1f1+wi2f2+ ...+
winfn. Using the same function, the final output f(x) is computed by taking the
outputs of the hidden nodes as its inputs (i.e., x = w0+w1f(x1)+w2f(x2)+ ...+
wkf(xk)). The final output represents the probability for an instance to be of a
certain class (e.g., class 1). During model training the weights are so computed
that the total squared error of the output is minimized. The squared error of a
single instance i is described by

errori =
1
2
(Li − f(x)i)2

where Li is the class of i and f(x)i is the model’s output for i. If there are totally
N instances used in model training, then the total squared error is ΣN

i=1errori.
When the weights have been established, the model training is finished.

522 C. Zhang et al.

During frequency estimation, a new target, whose frequency is to be estimated,
is viewed as a new instance whose class is unknown. Thus we encode it as a
feature vector < f

′
1, f

′
2, f

′
3, ..., f

′
14 > and feed the vector as the input to the

multilayer perceptron. In the end, the outputted probability is considered as the
estimated frequency of the target.

5 Evaluation

To evaluate our Festival approach, we have implemented a prototype on the ba-
sis of the Soot framework [4] and the Weka toolkit [24]. Soot is used to construct
static call graphs3 and extract static features, while Weka is used for machine
learning. We have performed a set of experiments on the implementation proto-
type. Through the experiments we try to answer the following research questions:

– RQ1: What is the estimation performance of Festival?
– RQ2: Is Festival applicable to various programs?
– RQ3: What is the predictive power of each feature?

5.1 Experimental Design

Subject programs. In the experiments we use 11 programs from the DaCapo
benchmark suite (version 9.12-bach) as the subject programs, because DaCapo
provides comprehensive workloads for each program. Moreover, as the bench-
mark suite is originally designed for Java runtime and compiler research (es-
pecially for performance research), we believe the workloads are representative.
Table 2 shows the basic characteristics of the subject programs. The column
#M shows the number of methods that are included in the static call graph of
each program, and the column #VC shows the number of virtual calls that have
multiple targets as identified by the points-to analysis. From the columns LOC
and Description, we can see that the subject programs are medium-to-large real-
world programs used in various application domains. Thus they are quite suitable
for our study on the research questions, especially RQ2. Note that we have not
selected three programs (namely jython, tradebeans, and tradesoap) from Da-
Capo. Because tradebeans and tradesoap involve too much multi-threading, it
is difficult for us to obtain their representative dynamic profiles. As for jython,
we failed to finish the instrumentation (for dynamic profiling) within tens of
hours. Although these three programs have been left out in the experiments,
we believe that the selected 11 subject programs are sufficient to validate our
Festival approach. Moreover, the lack of dynamic profiles does not indicate that
these programs cannot be estimated by Festival. It just prevents us from using
the programs for model training and evaluating Festival’s performance on them.

Model training scheme. In the experiments, multilayer perceptron is used as
the machine learning model in a way which is described in Section 4.3. During
3 The aforementioned Spark framework is a building block of Soot. We use Soot 2.4.0

together with TamiFlex [8] to build call graphs that include method calls via reflection.

Frequency Estimation of Virtual Call Targets for Object-Oriented Programs 523

Table 2. Subject programs from DaCapo-9.12-bach (LOC is measured using cloc [2]
version 1.51)

Name Description LOC #M #VC

avrora simulation and analysis tool 68864 2439 34

batik SVG toolkit 171484 5365 321

eclipse non-gui part of Eclipse IDE 887336 18632 3007

fop PDF file generator 96087 5503 682

h2 in-memory database 78124 3902 250

luindex text indexing 36099 1546 107

lusearch text searching 41153 1201 70

pmd code analyzer 49610 4741 110

sunflow rendering system 21960 1096 27

tomcat web application server 158658 11554 4417

xalan XSTL processor 172300 4366 547

Table 3. Numbers of virtual calls categorized by target number

Name 2 3 4 5 6 ∼ 10 �10 >10

avrora 10 3 3 0 3 19 4

batik 52 40 3 5 7 107 12

eclipse 626 128 121 73 119 1067 380

fop 60 10 3 3 4 80 26

h2 10 4 3 15 13 45 42

luindex 31 5 5 0 1 42 0

lusearch 16 6 0 1 0 23 0

pmd 46 1 1 1 3 52 2

sunflow 11 5 4 0 0 20 0

tomcat 2309 59 17 32 62 2479 75

xalan 25 16 0 2 15 58 20

total 3196 277 160 132 227 3992 561

model training, we take the leave-one-out strategy. That is, while evaluating
the performance of Festival on one specific subject program, we use the other
ten subject programs as training programs. In this way, the virtual call targets,
whose frequencies are estimated by the model, are never used to train that model.

Another special strategy we take for model training is to use the data only
from the virtual calls whose numbers of targets are less than or equal to 10. It
is mainly due to the fact that virtual calls with too many targets may affect the
training data drastically, whereas the current static features can hardly repre-
sent the information embedded in such kind of virtual calls (This limitation of
Festival will be discussed in Section 5.6). Nevertheless, as shown in Table 3, most
virtual calls in the subject programs have relatively small numbers of targets4.
4 Table 3 shows only the virtual calls that are executed during dynamic profiling, thus

the total number of virtual calls is smaller than that shown in Table 2.

524 C. Zhang et al.

Therefore, our model training scheme takes into account the vast majority of
the cases. Note that we obtained similar experimental results when we limited
the number of targets to 5 and 15.

Platform and runtime. The experiments have been conducted on a Linux
server, which has a 2.33GHz quad-core CPU and 16GB main memory. We use
IBM J9 VM for feature extraction and Sun HotSpot VM for dynamic profiling.
Although DaCapo provides workloads of different sizes, including small, default,
large, and huge, we only use the large workloads for dynamic profiling. Because
huge workloads are not available for most benchmarks, and small and default
workloads are generally less representative than large ones5. Table 4 shows the
runtime of each step in Festival, including preprocessing (PRE), feature extrac-
tion (FE), instrumentation (INS), execution (EXE), model training (MT), and
frequency estimation (EST). We can see that the time cost is reasonable even
for large-scale programs.

Table 4. Runtime of each step in Festival (EST is measured by second and others use
the format of h:mm:ss)

Name PRE FE INS EXE MT EST

avrora 1:27 1:27 0:35 8:00 0:36 0.18

batik 8:21 8:22 6:46 0:09 0:34 0.16

eclipse 14:41 12:05 3:50:47 5:33 0:24 0.56

fop 14:12 14:16 12:07 0:04 0:36 0.11

h2 2:21 2:11 8:21 1:47 0:35 0.15

luindex 1:31 1:31 0:28 0:08 0:34 0.09

lusearch 1:20 1:20 0:21 0:54 0:35 0.06

pmd 2:18 2:15 2:54 0:21 0:34 0.11

sunflow 4:19 4:22 0:27 29:17 0:36 0.08

tomcat 15:35 15:32 1:19:25 0:24 0:17 0.71

xalan 2:13 2:15 3:16 4:23 0:33 0.09

5.2 Rank Correlation Analysis

In this experiment, we evaluate the agreement between the estimated and real
frequency distributions. Specifically, for each virtual call, we first rank its targets
according to their estimated frequencies and dynamic profiles, respectively. Then
we measure the correlation between these two ranks by computing their Kendall
tau distance [3]. Conceptually Kendall tau distance represents the similarity be-
tween two ordered lists by counting the number of swaps needed to reorder one
list into the same order with the other. The normalized value of Kendall tau
distance lies in the interval [0, 1], where low distance value indicates high agree-
ment. The average normalized value of Kendall tau distance between a list and
its random permutation is 0.5. Because in this experiment random permutation
corresponds to the uniform frequency distribution, we use 0.5 as the baseline.
5 Since fop and luindex do not have large workloads, we use default ones instead.

Frequency Estimation of Virtual Call Targets for Object-Oriented Programs 525

avrora batik eclipse fop h2 luindexlusearch pmd sunflow tomcat xalan average

0.0

0.1

0.2

0.3

0.4

0.5

0.6

K
en

da
ll

ta
u

di
st

an
ce

subject program

Fig. 6. Kendall tau distance between estimated and real distributions

Figure 6 shows the average normalized Kendall tau distance for virtual calls in
each subject program as well as the overall average distance. Except for avrora,
all the subject programs have a distance less than 0.5 and the overall average dis-
tance is 0.33. It indicates that the estimated frequency distributions can reflect
the real distributions much better than the uniform distribution. By inspecting
the relevant data of avrora, we found that some static features that can charac-
terize avrora well (i.e., package depth and name similarity) have relatively low
predictive power in the estimation model trained using the other subject pro-
grams. It might be due to the different design styles between avrora and other
subject programs.

5.3 Top Target Prediction

According to the study by Grove et al. [16], one or two “hottest” targets usually
take up most of the execution count of a virtual call. Therefore, it is meaningful
to evaluate Festival’s ability to predict the top targets. As the virtual calls that
we study have at most 10 targets, we focus on the top one target of each virtual
call. The measure is straightforward: for a specific virtual call, if the estimated top
target actually has the largest execution count in the dynamic profile, we score the
prediction as 1; otherwise the score is 0. Figures 7 and 8 show the average scores
of top target prediction based on Festival and the uniform distribution, where
the scores are categorized by the number of targets and the subject program,
respectively.

As shown in Figure 7, we get a mixed result in top target prediction: for some
target numbers, Festival significantly outperforms uniform estimation, whereas
it has much worse performance for others. It is difficult for Festival to constantly

526 C. Zhang et al.

2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

0.000.00

av
er

ag
e

sc
or

e
of

 to
p

ta
rg

et
 p

re
di

ct
io

n

number of targets

 score of Festival estimation
 score of uniform estimation

Fig. 7. Average scores of top target prediction categorized by number of targets

predict the top one target, especially when the number of targets is relatively
large. However, as shown in Table 3, over 80% of the virtual calls (used for
evaluation) have two targets. Therefore, the average score of 0.87 for two-target
virtual calls can be viewed as more important than the other scores.

Figure 8 shows Festival’s performance for top target prediction from another
point of view. When the scores are averaged within each subject program, Festi-
val mostly outperforms uniform estimation. To be more detailed, for each subject
program, the average scores of Festival and uniform estimation are calculated by
Stotal

Nvc
and 1

Atgt
, respectively, where Stotal stands for the total score of all virtual

calls, Nvc stands for the number of virtual calls, and Atgt stands for the average
number of targets for each virtual call. Conceptually, Stotal

Nvc
represents the likeli-

hood for Festival to score 1 for each virtual call, and 1
Atgt

represents the likelihood
to randomly predict the top target of a virtual call. Therefore, it is reasonable
to compare them with each other. As for avrora, Festival does not perform well,
which is probably due to the same reason as discussed in Section 5.2.

5.4 Weight Matching Analysis

Besides the order of virtual call targets, the quantity of the estimated frequency
may also be useful in some quantitative analyses. In this experiment, we use
weight matching score [23] to measure the estimation performance of Festival in
this aspect. For example, Table 5 shows five virtual call targets, along with their
(normalized) estimated and real profiles. The two target lists are ordered by the
estimated and real profiles, respectively.

In computing the weight matching score, a cut-off n is specified at first.
Then we calculate the sum of real profile values for the top n targets in the

Frequency Estimation of Virtual Call Targets for Object-Oriented Programs 527

avrora batik eclipse fop h2 luindex lusearch pmd sunflow tomcat xalan average

0.0

0.2

0.4

0.6

0.8

1.0
av

er
ag

e
sc

or
e

of
 to

p
ta

rg
et

 p
re

di
ct

io
n

subject program

 score of Festival estimation
 score of uniform estimation

Fig. 8. Average scores of top target prediction categorized by subject program

estimated list as well as the sum for the top n in the real list (noted as Sume

and Sumr, respectively). The weight matching score is the ratio Sume/Sumr.
The perfect estimation has a score of 1, and the closer to 1, the better the
estimation is. In the example, for n = 2, the weight matching score is 0.85/0.95.

Table 5. An example for computing weight matching score

Estimated Target Real Target

0.50 A 0.80 A
0.20 B 0.15 C
0.10 C 0.05 B
0.10 D 0.00 D
0.10 E 0.00 E

In this experiment, we calculate the scores with the cut-off n = 1. As shown
in Figure 9, the average weight matching score of Festival is about 59%. For the
subject programs, the top target averagely takes up 91% of the execution count
in terms of the dynamic profiles. Thus Festival assigns more than a half (i.e.,
54%) of the execution count to the estimated top target in average.

5.5 Predictive Power Analysis

This experiment is designed for investigating the relative predictive power of each
static feature. To this end, we first build the estimation model based on each
single feature instead of the whole feature set. Then we compute the Kendall tau

528 C. Zhang et al.

avrora batik eclipse fop h2 luindex lusearch pmd sunflow tomcat xalan average

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

w
ei

gh
t m

at
ch

in
g

sc
or

e

subject program

Fig. 9. Average weight matching scores

feature 1

feature 2

feature 3

feature 4

feature 5

feature 6

feature 7

feature 8

feature 9

feature 10

feature 11

feature 12

feature 13

feature 14

0.0 0.2 0.4 0.6 0.8 1.0

normalized predictive power

st
at

ic
 fe

at
ur

e

Fig. 10. Predictive power of static features

distance, in the same way as the first experiment, to measure the performance
of the model, which in turn represents the predictive power of the feature.

Figure 10 shows the results, in which we use the normalized reciprocal of the
Kendall tau distance to represent the predictive power. Thus the features that
have larger values are more predictive than the others. In the experiment, the
most predictive two features are both call graph-based, while the five features
based on type hierarchy are seemingly less useful. However, as discussed in Sec-
tion 2, feature 6 is closely related to features 2 and 3. Thus the correlations
between call graph and type hierarchy may have large impact on the estima-
tion. Similar to those based on type hierarchy, the complexity-based features

Frequency Estimation of Virtual Call Targets for Object-Oriented Programs 529

have moderate predictive power. In contrast, the surface features of target class
generally have the lowest power. They might be too simple to capture sufficient
design intentions. For naming style features, the depth of package is more infor-
mative than the name similarity. However, by analyzing the source code, we have
found that the latter may become more predictive, if we have a better algorithm
for computing name similarity. We are planning to improve this feature in our
future work.

5.6 Discussion

The first three experiments have evaluated the estimation performance of Festi-
val with respect to different measures. The experimental results give satisfactory
answers to the research questions RQ1 and RQ2. In addition, the analysis based
on the fourth experiment presents an answer to RQ3. In summary, Festival can
indeed provide useful information of execution frequency for virtual call targets.

Currently Festival has a limitation that it cannot provide useful estimation
for virtual calls that have too many targets. A typical case is the visitor design
pattern [15], which usually involves complex type hierarchies. For example, the
eclipse JDT compiler API uses visitor pattern to process AST. Consequently,
the class ASTNode has more than 90 subclasses, most of which have implemented
the accept method. It is really difficult to estimate frequencies for so many im-
plementations of the accept method. Another difficulty may stem from the fact
that such kind of type hierarchies usually indicate complicated design intentions
that can hardly be captured by our current static features.

5.7 Threats to Validity

One threat to the validity of the experiments is that we evaluate the accuracy
of our approach by comparing the estimated frequencies with dynamic profiles.
If the workloads are not representative, the comparison may lead to skewed
results. To alleviate this problem, we choose subject programs from the DaCapo
benchmark suite. Another threat is overfitting which means the machine learning
model fits too well to the training data and has poor predictive performance
on unseen test data. In the experiments we always leave out the program to be
estimated and train the model using all the other programs. We believe this kind
of cross-validation can avoid the threat of overfitting. Finally, the static features
we use may not comprehensive enough to capture all the valuable information.
In fact we have studied over 20 features and selected the most informative 14 of
them to build the estimation model.

6 Related Work

Machine learning is a powerful tool for predicting program behaviors. Calder et
al. [11] proposed a branch prediction technique using decision trees and neural
nets and coined the term evidence-based static prediction or ESP. Our approach

530 C. Zhang et al.

has a similar architecture to their work. However, while their technique tackles
the problem of branch prediction for C and Fortran programs, our work investi-
gates the frequency estimation of virtual call targets which are specific to object-
oriented programs. Furthermore, the static features used in their approach are
mostly based on characteristics of instructions and control flows. In contrast,
Festival focuses on features at higher levels, since it tries to reveal design in-
tentions. Buse and Weimer [10] recently introduced a machine learning-based
approach to estimation of execution frequency for program paths. Inspired by
this work, we choose our static features to capture design intentions. Different
from Festival, their approach is focused on program paths rather than virtual
calls. Moreover, their main idea is to perform estimation based on state change
patterns. It is different from our idea, which is mainly about the specialty and
popularity of target methods and classes.

Dynamic profile-guided techniques are widely used to predict program behav-
iors to support code optimizations. Grove et al. [16] developed the call chain
profile model to describe profile information at various granularities. In their
work, they have performed a detailed study on the predictability of receiver
class distributions which shows that the distributions are strongly peaked and
stable across both inputs and program versions. Although taking a different
prediction approach, our work is largely motivated by the results of the study.
Virtual method calls and switch statements are usually implemented by indirect
jumps at the instruction level. Li and John [21] explored the control flow trans-
fer behaviors of Java runtime systems. Besides other observations, they found
that most of the dynamic indirect branches are multi-target virtual calls and a
few target addresses have very high frequencies, which confirms the results of
the study by Grove et al. Other dynamic techniques [14] [19] have been pro-
posed to improve the prediction accuracy and reduce the misprediction penalty
for indirect branches. Compared with these dynamic techniques, Festival is rel-
atively lightweight in that it only requires surface level instrumentation and
program-based features. No instruction level manipulation or hardware exten-
sion is needed. In addition, the estimation phase of Festival is purely static and
does not rely on representative workloads.

Besides dynamic profiling, static techniques have also been proposed to es-
timate frequencies of various program elements. Wall [23] conducted a com-
prehensive study on how well real (dynamic) and estimated (static) profiles
can predict program behaviors. Based on the study, Wall argued that real pro-
files are usually better than estimated profiles. However, he also warned about
the representativeness of real profiles. Focusing on non-loop two-way branches,
Ball and Larus [6] proposed several heuristics to perform program-based branch
prediction for programs written in C and Fortran. Based on these heuristics,
Wu and Larus [25] designed a group of algorithms to statically calculate the
relative frequencies of program elements. They use Dempster-Shafer technique
to combine basic heuristics into stronger predictors. To address the similar is-
sue, Wagner et al. [22] independently developed a static estimation technique.
They used Markov model to perform inter-procedural estimations. Similar to our

Frequency Estimation of Virtual Call Targets for Object-Oriented Programs 531

approach, these static approaches aim at the problems which are not amenable
to dynamic techniques. Therefore, their motivations also greatly motivate our
work. However, we focus on virtual calls in object-oriented programs that have
not been studied by the existing work.

7 Conclusions and Future Work

In this paper we have described the Festival approach to frequency estimation
for virtual call targets in object-oriented programs. Using static feature data and
dynamic profiles of selected programs, we train a multilayer perceptron model
and use it to perform estimation for new programs. The evaluation shows that
Festival can provide estimations which are much more accurate than estimations
based on the uniform frequency distribution. It means that the approach can be
useful to a number of applications.

In our future work, we are planning to investigate more static features from
other aspects (e.g., control-flow graph structure) and figure out how to combine
probabilistic points-to analysis with Festival in order to make them benefit from
each other.

Acknowledgments. We are grateful to Qingzhou Luo for his discussion and
to Eric Bodden for his suggestions on using Soot and TamiFlex. The presented
work was supported in part by National Natural Science Foundation of China
(NSFC) (Grants No.60673120 and No. 60970009).

References

1. ANTLR Parser Generator, http://www.antlr.org/
2. CLOC – Count Lines of Code, http://cloc.sourceforge.net/
3. Kendall tau distance, http://en.wikipedia.org/wiki/Kendall_tau_distance
4. Soot: a Java Optimization Framework, http://www.sable.mcgill.ca/soot/
5. Baah, G.K., Podgurski, A., Harrold, M.J.: The probabilistic program dependence

graph and its application to fault diagnosis. In: ISSTA 2008: Proceedings of the
2008 International Symposium on Software Testing and Analysis, pp. 189–200.
ACM, New York (2008)

6. Ball, T., Larus, J.R.: Branch prediction for free. In: PLDI 1993: Proceedings of the
ACM SIGPLAN 1993 Conference on Programming Language Design and Imple-
mentation, pp. 300–313. ACM, New York (1993)

7. Blackburn, S.M., Garner, R., Hoffmann, C., Khang, A.M., McKinley, K.S.,
Bentzur, R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosk-
ing, A., Jump, M., Lee, H., Moss, J.E.B., Moss, B., Phansalkar, A., Stefanović, D.,
VanDrunen, T., von Dincklage, D., Wiedermann, B.: The dacapo benchmarks:
java benchmarking development and analysis. In: OOPSLA 2006: Proceedings of
the 21st annual ACM SIGPLAN Conference on Object-oriented Programming Sys-
tems, Languages, and Applications, pp. 169–190. ACM, New York (2006)

8. Bodden, E., Sewe, A., Sinschek, J., Mezini, M.: Taming Reflection (Ex-
tended version). Technical Report TUD-CS-2010-0066, CASED (March 2010),
http://cased.de/

http://www.antlr.org/
http://cloc.sourceforge.net/
http://en.wikipedia.org/wiki/Kendall_tau_distance
http://www.sable.mcgill.ca/soot/
http://cased.de/

532 C. Zhang et al.

9. Boogerd, C., Moonen, L.: Prioritizing software inspection results using static pro-
filing. In: Sixth IEEE International Workshop on Source Code Analysis and Ma-
nipulation, pp. 149–160 (2006)

10. Buse, R.P.L., Weimer, W.: The road not taken: Estimating path execution fre-
quency statically. In: ICSE 2009: Proceedings of the 31st International Conference
on Software Engineering, pp. 144–154. IEEE Computer Society, Washington, DC,
USA (2009)

11. Calder, B., Grunwald, D., Jones, M., Lindsay, D., Martin, J., Mozer, M., Zorn,
B.: Evidence-based static branch prediction using machine learning. ACM Trans.
Program. Lang. Syst. 19(1), 188–222 (1997)

12. Chambers, C., Dean, J., Grove, D.: Whole-program optimization of object-oriented
languages. Technical report, Department of Computer Science and Engineering,
University of Washington (1996)

13. Dean, J., Grove, D., Chambers, C.: Optimization of object-oriented programs using
static class hierarchy analysis. In: Olthoff, W. (ed.) ECOOP 1995. LNCS, vol. 952,
pp. 77–101. Springer, Heidelberg (1995)

14. Ertl, M.A., Gregg, D.: Optimizing indirect branch prediction accuracy in virtual
machine interpreters. In: PLDI 2003: Proceedings of the ACM SIGPLAN 2003
conference on Programming Language Design and Implementation, pp. 278–288.
ACM, New York (2003)

15. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
Boston (1995)

16. Grove, D., Dean, J., Garrett, C., Chambers, C.: Profile-guided receiver class pre-
diction. SIGPLAN Not 30(10), 108–123 (1995)

17. Hovemeyer, D., Pugh, W.: Finding bugs is easy. SIGPLAN Not 39(12), 92–106
(2004)

18. Hwang, Y.-S., Chen, P.-S., Lee, J.K., Ju, R.D.-C.: Probabilistic points-to analysis.
In: Rauchwerger, L. (ed.) LCPC 2003. LNCS, vol. 2958, pp. 290–305. Springer,
Heidelberg (2004)

19. Joao, J.A., Mutlu, O., Kim, H., Agarwal, R., Patt, Y.N.: Improving the perfor-
mance of object-oriented languages with dynamic predication of indirect jumps.
In: ASPLOS XIII: Proceedings of the 13th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, pp. 80–90.
ACM, New York (2008)

20. Lhoták, O.: Spark: A flexible points-to analysis framework for Java. Master’s The-
sis, McGill University (2002)

21. Li, T., John, L.K.: Understanding control flow transfer and its predictability in
Java processing. In: IEEE International Symposium on Performance Analysis of
Systems and Software, pp. 65–76 (2001)

22. Wagner, T.A., Maverick, V., Graham, S.L., Harrison, M.A.: Accurate static estima-
tors for program optimization. In: PLDI 1994: Proceedings of the ACM SIGPLAN
1994 Conference on Programming Language Design and Implementation, pp. 85–
96. ACM, New York (1994)

23. Wall, D.W.: Predicting program behavior using real or estimated profiles. SIG-
PLAN Not 26(6), 59–70 (1991)

24. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

25. Wu, Y., Larus, J.R.: Static branch frequency and program profile analysis. In:
MICRO 27: Proceedings of the 27th Annual International Symposium on Microar-
chitecture, pp. 1–11. ACM, New York (1994)

	Frequency Estimation of Virtual Call Targets for Object-Oriented Programs
	Introduction
	Motivating Example
	Potential Applications
	Approach
	Preprocessing
	Static Feature Set
	Estimation Model

	Evaluation
	Experimental Design
	Rank Correlation Analysis
	Top Target Prediction
	Weight Matching Analysis
	Predictive Power Analysis
	Discussion
	Threats to Validity

	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

