
XFindBugs: eXtended FindBugs for AspectJ

Haihao Shen, Sai Zhang, Jianjun Zhao, Jianhong Fang, Shiyuan Yao
School of Software, Shanghai Jiao Tong University
800 Dongchuan Road, Shanghai 200240, China

{haihaoshen, saizhang, zhao-jj, fjh1226, ysyadam}@sjtu.edu.cn

ABSTRACT
Aspect-oriented software development (AOSD) is gaining popular-
ity with the wider adoption of languages such as AspectJ. However,
though the state-of-the-art aspect-oriented programming environ-
ment (such as AJDT in the Eclipse IDE) provides powerful capa-
bilities to check the syntactic or grammar errors in AspectJ pro-
grams, it fails to detect potential semantic defects in aspect-oriented
software systems. In this paper, we present XFindBugs, an eX-
tended FindBugs for AspectJ, to help programmers find potential
bugs in AspectJ applications through static analysis. XFindBugs
supports 17 bug patterns to cover common error-prone features in
an aspect-oriented system, and integrates the corresponding bug
detectors into the FindBugs framework. We evaluate XFindBugs
on a number of large-scale open source AspectJ projects (306,800
LOC in total). In our evaluation, XFindBugs confirms 7 reported
bugs and finds 257 previously unknown defects. Our experiment
also indicates that the bug patterns supported in XFindBugs exist
in real-world software systems, even for mature applications by ex-
perienced programmers.

1. INTRODUCTION
Static analysis for software defect detection is a promising tech-

nique to improve software quality. Because of the sheer complexity
of modern programming languages, the potential for misuse of lan-
guage features, API rules or simply bad programming practice may
be enormous. Static analysis techniques can explore abstractions of
all possible program behaviors, and thus are not limited by the qual-
ity of test cases in order to be effective. Static analysis tools, such
as [8,10,11,19,22], serve an important role in raising the awareness
of developers about subtle correctness issues. In addition to find-
ing existing bugs, these tools can also help programmers to prevent
future defects. FindBugs [8], one of the most popular static anal-
ysis tools, is becoming widely used in Java community. FindBugs
implements a set of bugdetectorsfor a variety of commonbug pat-
terns(code idioms that are likely to be errors [25]), and uses them
to find a significant number of bugs in real-world applications and
libraries [14,15].

Aspect-Oriented Programming (AOP) [27] has been proposed as
a technique for improving separation of concerns in software de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASTE’08,November 9-10, Atlanta, Georgia USA.
Copyright 2008 ACM 978-1-60558-382-2/08/11 ...$5.00.

sign and implementation. It is gaining popularity with the wider
adoption of languages such as AspectJ. AspectJ is a seamless ex-
tension of Java. An AspectJ program can be divided into two parts:
base codewhich includes classes, interfaces, and other language
constructs as in Java, andaspect codewhich includes aspects for
modeling crosscutting concerns in the program. However, though
the state-of-the-art aspect-oriented programming environments (such
as AJDT [5] in the eclipse [7] IDE) provide powerful capability to
check the syntactic or grammar errors in AspectJ programs, they
fail to detect potential semantic defects in software systems. For
example, the type checker used in AJDT only checks the syntactic
correctness of the program, but fails to identify or even to gener-
ate a warning about thetype conflictsintroduced by an aspect. In
such cases, once the class containing an introduced field with a con-
flicting type is instantiated, the whole program will be terminated
abruptly.

Although the executable code of an AspectJ program is pure Java
bytecode, the existing bug patterns and defect detection tools for
Java bytecode might not be applied directly. In addition to the byte-
code that corresponds to the source code (e.g., to bodies of advices),
the compiled bytecode of an AspectJ program contains extra code
inserted by the compiler during the weaving process. After weav-
ing, the source code levelaspect,adviceor intertype declaration
information has been translated into pure Java bytecode instruc-
tions, and therefore is no longer preserved. In fact, in our experi-
mental study, none of the bugs found by XFindBugs presented in
Section 5, can be detected directly by FindBugs.

In this paper, we present XFindBugs, an eXtended FindBugs for
AspectJ. XFindBugs defines a catalog of 17 bug patterns for aspect-
oriented features, and implements a set of bug detectors on top of
the FindBugs analysis framework. Bug patterns abstract common
misunderstandings of language features, API rules and bad pro-
gramming practice. They help programmers to get a better under-
standing of how to write bug-free code. We also perform an em-
pirical evaluation of XFindBugs on several AspectJ benchmarks
and third-party large-scale applications (like GlassBox [9], AJHot-
Draw [1], and AJHSQLDB [2]). XFindBugs confirms 7 reported
bugs and finds 257 previously unknown defects in these subjects,
some of which may even result in a software crash. The experi-
ment also indicates that the bug patterns XFindBugs supports exist
in real-world software systems, even in mature AspectJ applica-
tions by experienced programmers.

In summary, the main contributions of this paper are:(1) a sys-
tematic catalog of bug patterns for AspectJ programs,(2) design
and implementation of XFindBugs, a static defect detection tool for
AspectJ software, and(3) an empirical evaluation of XFindBugs on
over 300KLOC, which evidences the practical issues.

The rest of the paper is organized as follows. We start to briefly

70

introducethe background of FindBugs and discuss the error-prone
features of AspectJ programs in Section 2. Section 3 presents the
a catalog of bug patterns for AspectJ in detail. Section 4 summa-
rizes the implementation issues on XFindBugs. Section 5 reports
an empirical evaluation on XFindBugs. Related work and conclud-
ing remarks are given in Section 6 and Section 7, respectively.

2. BACKGROUND
We next briefly introduce the background of FindBugs and error-

prone features in aspect-oriented programs.

2.1 FindBugs
FindBugs [8], an open-source static analysis tool, has been widely

used for detecting programming defects in Java community. It pro-
vides an extensible plugin architecture in which bug detectors can
be easily defined, each of which may correspond to several different
bug patterns. Until now, there are more than 300 bug patterns sup-
ported by FindBugs. The detectors implemented in Findbugs use a
variety of techniques. Many simple detectors use a visitor pattern
over the classfile, often using a state machine to reason about val-
ues stored on the stack or in local variables. Some detectors also
incorporate control flow and data flow information into analysis,
for finding sophisticated defects likeNull Pointer Bugs [26].
Findbugs has been evaluated on a number of commercial and open
source projects. For example, Findbugs analyzed all 89 publicly
available builds of JDK (from builds b12 to b105) [14] and gen-
erated over 370 warnings with high/medium priority. Google has
also incorporated static analysis into its software development pro-
cess [14,30]. The developers in Google run FindBugs on Google’s
Java code base, manually evaluated warnings, and filled bug reports
as deemed appropriate. As a result, there are totally 1127 warn-
ings reported by FindBugs in Google with medium/high priority.
In both experiences, the help of Findbugs facilitates programmers
to find the potential defects and then modify them quickly.

2.2 Error-prone Features in AspectJ Programs
AspectJ [3], a seamless aspect-oriented extension to the Java pro-

gramming language, encapsulates crosscutting concerns for better
modularity using constructs likepointcut,adviceandintertype dec-
larations. These new aspectual features ease separation of con-
cerns in software design and implementation, but also introduce
new error-prone features to the traditional Java programs. For ex-
ample, the join point model in AspectJ is defined in a lexical-level,
and the selection relies on naming conventions. It is easy for pro-
grammers to pick up incorrect join points, particularly when using
wildcards in pointcut designators (such as the bug patterns of the
Pointcut category in Table 1). Also, more than one advice can
be activated at the same join point, in which the advice invocation
sequence would affect the program execution and one advice’s be-
havior may be altered by another advice (such as the bug patterns of
theAdvice category in Table 1). Furthermore, the intertype decla-
ration mechanism (also called introduction or structural superimpo-
sitions [18]) offered by AspectJ can easily add new class members
to override an existing one, or even alter the original class hierar-
chy dramatically (such as the bug patterns of theIntroduction
category in Table 1).

The error-prone features of AspectJ may easily lead to poten-
tial defects in an aspect-oriented system, even for experienced pro-
grammers or in mature applications (Section 5). However, the cur-
rent state-of-the-art programming environment for AspectJ (such
as AJDT [5]) fails to report such defects or even fails to generate
any warnings. Therefore, in order to handle the unique aspectual
features, there is a need to define new bug patterns and develop
corresponding tool supports for AspectJ programs.

3. BUG PATTERNS IN ASPECTJ
As previously mentioned, a key part of XFindBugs is the defi-

nition of bug patterns for AspectJ programs. Table 1 lists a set of
17 bug patterns supported by XFindBugs in the current implemen-
tation. The bug patterns listed in Table 1 include the 5 categories1

from [37], plus 12 new bug patterns (the bottom 12 rows of the ta-
ble). We collect and abstract these newly added bug patterns from
various sources, such as AspectJ Bugzilla reports [4], both beginner
and professional programmers’ feedback and our own experience
in AspectJ programming.

Table 1: A catalog of bug patterns in AspectJ programs

Pattern ID Short Description Category Priority
TMAI TheMultiple Advice Invocation Advice Low
TIL The Infinite Loop Pointcut Medium

TSOA TheScopeOf Advice Advice Low
TOTC TheObjectTypeChange Advice Medium
MOG MisuseOf GetTarget Advice Medium

TROP TheReturnOf Proceed Advice Medium
AFBI AccessField BeforeObjectInitialization Advice Medium
AFOS AssignField Of SuperClass Advice Medium
TNP TheNegatedPointcut Pointcut Low
IGMI InvokeGenericTypeMethodIndirectly Introduction Medium
ULIF UselessIntroducedField Introduction Medium

TDAM TheDif ferentAccessModifier Introduction Medium
SA SingletonAspect Advice High

URT UncheckedReturnType Introduction High
UID UncheckedIntertypeDeclarations Introduction Medium

TMCD TheMultiple ClassDeclaration Introduction Medium
MOAR MismatchingOf After Returning Advice Medium

As shown in Table 1, we classify 17 bug patterns into three cat-
egories (Advice, Pointcut, and Introduction) according to
their root causes. We also define a priority (Low, Medium, or High)
for each bug pattern to indicate the severity. The instances of bug
patterns with low severity are reported to warn programmers about
the bad programming practices, while the reported warnings with
medium or high severity may lead to program crash. Since most
bug patterns have a number of representation variants and alter-
natives, we choose the one that appears to be the most generally
applicable. We next select six typical bug patterns in Table 1 to
explain the symptom, cause, and cure. Explanations of other bug
patterns can be found in an extended technical report [32] and [37].

3.1 Access Field Before Object Initialization
Accessing an object before its initialization will result in aNull-

PointerException at runtime. The AspectJ language provides a
mechanism (theexecution(ClassName.new()) pointcut) to in-
tercept constructor calls. The advice can also take over the control
flow of object initialization in the program, and leave the object
uninitialized. For example, Programmers sometimes incorrectly
define an advice like in Figure 1. In this example, accessing caller
object throughthis(a) will cause a Null Pointer deference. The
detector in XFindBugs looks for instructions in a classfile, and gen-
erates a warning where an object might be accessed before its ini-
tialization.

An example (found by XFindBugs) of this bug pattern is shown
in Figure 1. The before advice accesses objecta before its initial-
ization, and the dereference ofa in statementif(!a.s.equals("
some value") will lead to a NullPointerException at run-
time. As later described in Section 5, we are surprised to find that
a similar bug instance could find its way into a mature, well-tested
application.

We recommend programmers avoid accessing any uninitialized
field in thebefore advice, or use defensive programming (as shown

1TheMultiple Advice Invocation, The Infinite Loop, The Scope of Advice, The Ob-
ject Type Change, and Misuse of GetTarget

71

in Figure 2) to check thenullness when using fields, especially
when the advice intercepts constructor calls.
public class A {

public String s = "Initialize s!";
} public aspect B {

pointcut beforeInitialize(A a):
execution(A. new()) && this(a);

before(A a): beforeInitialize(a) {
if(!a.s.equals("some value")) {...}

}
}

Figure 1: Example of Access Field Before Object Initialization

before(A a): beforeInitialize(a) {
if(a.s != null) {...}

}

Figure 2: Corrected Example of AFBI

3.2 Mismatching Of After Returning
There are two special cases of after advice in AspectJ,after re-

turning andafter throwing, corresponding to the two ways a sub-
computation can return through a join point. Since the AspectJ
compiler is unaware of the return type exposed by theafter return-
ing advice, when anafter returningadvice matches avoid method,
the return type will be treated asNULL.

A bug example found by XFindBugs is shown in Figure 3. The
adviceafter(): returning(Object o): withoutRetur-
ntype() matchespublic void print() method in classA. There-
fore, the objecto used in this advice body will be dereferenced as
NULL (a NullPointerException will be thrown).

public class A {
public void print() {

System.out.println("The return type is void!");
}

}
public aspect B {

pointcut withoutReturntype():
execution(public void print());

after () returning(Object o): withoutReturntype() {
System.out.println(o.toString());

}
}

Figure 3: Example of Mismatching Of After Returning

3.3 Singleton Aspect
In AspectJ, thedefault behavior of a non-abstract aspect is to

have a single instance [6], and advices run in the context of this in-
stance. The aspect declaration also accepts a modifier, called"of"
that provides other kinds of aspect instance behavior. This aspect
instance initialization mechanism poses extra complexity and error-
proneness to the programs. In case of the careless pointcut defini-
tion, when an aspect has aninitialization pointcut which ac-
cidently matches the self-initialization join point, the program will
terminate with a runtime exception. This bug pattern, though it
seems tricky or even ironic, is also found in our experiment.

We take a code snippet found by XFindBugs as an example (Fig-
ure 4). The pointcutinitPoint() unintendedly matches the ini-
tialization of aspectB, and causes the program to terminate when
theafter():initpoint() advice body is executed. XFindBugs
detects such anomaly in the AspectJ programs, and generates a
warning, informing programmers should add aperthis keyword
in the aspect declaration (Figure 5).
3.4 The Return Of Proceed

The around advice in AspectJ has the special usage of selectively
preempting the normal computation at the join point. Around ad-
vice runs in place of the join point it operates over, rather than

public class A {
public void printString() {...}
public static void main(String[] args) {

new A().printString();
}

}
public aspect B {

pointcut point(): execution(* A.printString());
before(): point() {...}
pointcut initpoint(): initialization(B. new());
after(): initpoint() {...}

}

Figure 4: Example of Singleton Aspect

public aspect B perthis (point()) {...}

Figure 5: Corrected Example of SA

before or after it, while theproceed form takes as arguments the
context exposed by the around’s pointcut, and returns whatever the
around is declared to return. However, within the body of an around
advice, callingproceed() will invoke the next most specific piece
of around advice (if there is any), which may lead to unexpectedly
problems.

An example ofThe Return of Proceedfound by the detector
is shown in Figure 6. The program initializes the fieldInteger
i in the interfaceI with value new Integer(3), after execut-
ing statementObject result = proceed(val). However, af-
ter theInteger around(int val) advice, fieldi has been as-
signed twice (with the same valuenew Integer(3)). This vio-
lates the Java language specification2, and aClassFormatError
will be thrown at runtime.

XFindBugs detects such defect and generates a warning for pro-
grammers, informing the potential conflicts (the fieldi in the inter-
faceI, and theproceed(val) statement in this example).

public interface I {
public Integer i = new Integer(3);

}
public aspect B {

Integer around(int val):
call(Integer.new(int))&& args(val) {
Object result = proceed(val);
return (Integer)result;

}
}
public class A implements I {

public static void main(String[] args) {...}
}

Figure 6: Example of The Return Of Proceed

3.5 The Negated Pointcut
As introduced in Section 2.2, the join point model in AspectJ

is defined in a lexical-level, and the selection relies on naming
conventions. So, when using wildcards specified in a pointcut to
match join points, it is easy for programmers to pick up an incorrect
join point. Thenegated pointcuthere refers to those pointcuts like
negatepoint(): !execution(* A.subString()), which use
"!" to exclude certain join points during execution. The use of
negatedpointcut may ease to express certain complex pointcut ex-
pressions, but it also has serious side-effects which may even result
in a program crash.

Consider the negated pointcut example in Figure 7, which will
throw anExceptionIntitializeError at runtime. Thenegat-
epointcut() is likely to intercept a number of unexpected join
points, such as object construction or the main method. These un-
expected intercepted join points will lead to anObject Access Be-

2Public fields in a Java interface all have "public static final" modifiers after being
compiled, and should not be assigned twice.

72

fore Initializationor Infinite Loopbug pattern.

public class A {
public void printString() {...}
public static void main(String[] args) {

new A().printString();
}

}
public aspect B {

pointcut negatepoint(): !execution(* A.subString());
before(): negatepoint() {...}

}

Figure 7: Example of The Negated Pointcut

3.6 Unchecked Intertype Declarations
The intertype declaration mechanism of AspectJ can introduce

a new class member, to change the program structure statically.
However, the type checker of the AspectJ compiler does not verify
the type correctness of intertype declarations, which may result in
program ambiguity [21], introduction conflicts or even runtime er-
rors. The bug patternUnchecked Intertype Declarationsrefers to
the large extent problems caused by the type checking of ambigu-
ous intertype declarations.

An example of this bug pattern is shown in Figure 8. This piece
of code, which introduces an illegal intertype declarationpublic
int A.x = "hello" , can surprisingly pass the AspectJ ajc v1.5
compiler. However, the program will terminate with aVerifyError
as soon as it is executed.

Our XFindBugs implements the bug detector to check the type
consistence of each intertype declaration, and generates correspond-
ing warnings if any type rules in the Java language specification are
violated.

public class A {
public static void main(String[] args) {

new A();
}

}
public aspect B {

public int A.x = "hello";
}

Figure 8: Example of Unchecked Intertype Declarations

4. IMPLEMENTATION ISSUES
To investigate the applicability of our proposed bug patterns, we

implemented XFindBugs, an eXtended FindBugs for AspectJ pro-
grams. XFindBugs is built on top of the FindBugs analysis frame-
work and supports the AspectJ compiler ajc [3] version 1.5 in the
current implementation.

FindBugs provides an extensible plugin architecture. For each
bug pattern presented in Section 3, we implemented a correspond-
ing bug detector to detect the bug pattern instances. Like the exist-
ing bug detectors in FindBugs, our newly added detectors perform
bytecode level analysis to detect potential defects. The detectors
use a visitor pattern over the classfiles and/or the method byte-
codes, getting information about types, constant values, and spe-
cial flags (e.g., this value is the result of calling hashCode) about
values stored on the stack or in local variables. For example, one
of the most complex detectors we implemented is for bug pattern
Singleton Aspect(Figure 4). The detector manipulates the bytecode
instruction in the classfile to find thesignature(Figure 9) of this bug
pattern. The detector first verifies whetherajc$perSingletonIns-
tance is in the CONSTANT POOL and then searches whether the
methodaspectOf is inside the<init> method declaration. If
both signatures are found, the detector reports a warning.

5. EMPIRICAL EVALUATION

private static synthetic void ajc$postClinit()
0: new (2)
4: invokespecial B.<init> ()V (71)
7: putstatic B.ajc$perSingletonInstance LB; (62)

public void <init>()
8: invokestatic B.aspectOf ()LB; (80)
11: invokevirtual B.ajc$after$B$2$4ccac9f1 ()V (82)

public static B aspectOf()
0: getstatic B.ajc$perSingletonInstance LB; (62)
3: ifnonnull #19
6: new <org.aspectj.lang.NoAspectBoundException> (64)

Figure 9: Bytecode Signature of Singleton Aspect Bug Pattern

This section presents the empirical results produced by applying
XFindBugs on selected subjects. We describe the objective, the
subjects, and the presentation of empirical results.

5.1 Objective
The objective of the evaluation is to investigate the following

questions:
• Do the bug patterns defined in this paper exist in real-world

AspectJ applications?
• Can the tool XFindBugs find real potential defects?
• Can XFindBugs scale to large applications, or is there a real

necessity for the usage of our tool?

5.2 Subject Programs
The subject programs used in this paper are collected from var-

ious sources. AJHotdraw [1], AJHSQLDB [2], and GlassBox [9]
are three mature large-scale AspectJ applications. The ajc and abc
benchmarks are obtained from theajcandabccompiler distribution
packages. The design patterns program suite, which implements 23
design patterns, is described in [20]. The subject programs used in
this evaluation are also widely used by other researchers to evalu-
ate their work [12, 31, 33, 34, 36]. We also run XFindBugs on the
buggy code reported by real-world AspectJ programmers from As-
pectJ Bugzilla for evaluation. Table 2 shows the name of each sub-
ject program (Name), the number of lines of code in total (LOC),
the number of advices (#Advice), the number of pointcuts (#Point-
cut), and the number of intertype declarations (#Introduction). Sev-
eral subject programs have multiple releases, we run XFindBugs on
each available version.

Table 2: Subject Programs
Name LOC #Advice #Pointcut #Introduction

AJHotdraw 38846 48 33 54
AJHSQLDB 123661 30 38 0

GlassBox 39220 132 183 44
ajcBenchmarks 4656 44 30 27
abcBenchmarks 89596 54 54 87
DesignPatterns 10821 15 24 43

5.3 Experiment Procedures
We conducted two different evaluations on XFindBugs to show

XFindBugs can effectively detect potential defects in AspectJ pro-
grams.

• we extract the existing bug reports from AspectJ Bugzilla [4]
and run XFindBugs on the reported buggy code, to see whether
it can confirm reported bugs.

• we run XFindBugs on the subject programs listed in Table 2,
to see whether XFindBugs can find any previously unknown
defects.

XFindBugs performs fully automated analysis and generates warn-
ings for each suspicious code snippet. For each warning produced
by XFindBugs, we check the corresponding source code manually
to confirm its validity.

73

5.4 Threats to Validity
Like any empirical evaluation, there are some threats to validity

which must be taken into consideration in our experiment. Though
XFindBugs has been evaluated on over 300KLOC Java and As-
pectJ code, the programs we investigated may be not representative
enough. For example, the instances of six bug patterns (SA, URT,
UID, TMCD, MOAR, and TOTC) are not found in these subject
programs, but they do exist in our programming experience. There-
fore, we need to investigate more AspectJ applications in our future
work.

Since the bytecode generated after the advice weaving process is
compiler-specific, different AspectJ compilers may produce differ-
ent bytecode. For this reason, though the current implementation of
XFindBugs fully supports the AspectJ compiler ajc v1.5, one of the
most widely used and well supported compilers, we can not claim
XFindBugs can find bug pattern instances in the woven bytecode
produced by a different AspectJ compiler.

5.5 Result and Analysis
5.5.1 Defects from AspectJ Bugzilla

We evaluated XFindBugs to check whether it can confirm known
defects described in the literature. We picked up six bug reports3

from AspectJ Bugzilla, and ran XFindBugs on the reported buggy
code snippets. As a result, XFindBugs reports seven bug instances
which fail into six bug patterns4, and pinpoints the faulty code cor-
rectly as described in the report.

5.5.2 Defects in Subject Programs
We used XFindBugs to detect potential bugs in a number of real-

world AspectJ applications listed in Table 2. Table 3 shows the
empirical results produced by XFindBugs. Column 1 shows the
evaluated subject program’s name, columns 2 - 12 show the num-
ber5 of warnings on each bug pattern (Table 1) found by XFind-
Bugs, column 13 (#All) summarizes the total warning number, and
column 14 (%FP) shows the rate of false positives6 that is deter-
mined by manually inspecting the source code. From the table, we
observe that XFindBugs reports 287 warnings on the subject pro-
grams and AspectJ Bugzilla, in which 264 are confirmed as real
defects (including 7 known bugs in AspectJ Bugzilla). The exper-
imental result indicates that a large part of bug pattern instances
exist in real-world programs and the other part come from our col-
leagues’ coursework. In addition, XFindBugs can scale well to find
them within an acceptable false positive rate.

AJHotDraw. AJHotDraw is an aspect-oriented refactoring of JHot-
Draw, which is a well-designed open source Java framework for
technical and structured 2D graphics. However, XFindBugs still
finds two defects on its latest version. These two defects fall into
the Misuse of GetTargetbug pattern. We show the code sample
taken from AJHotDraw in Figure 10 and 11.

The two advices shown in Figure 10 and 11 both advise static
methods in AJHotdraw. In this example, thethisJoinPoint.get-
Target() would returnNULL, and aNullPointerException
will be thrown when dereferencing the return object.

AJHSQLDB. Like AJHotDraw, AJHSQLDB is another aspect-
oriented refactoring case study on HSQLDB. It has more than 120
KLOC in the investigated version. XFindBugs also finds several

3Bugzillanumber: 195794, 148644, 165810, 145391, 218023, and 72834.
4Assign Field Of SuperClass, The Return Of Proceed, The Negated Pointcut, Invoke
GenericType Method Indirectly, Useless Introduced Field, and The Different Access
Modifier
5The number in parentheses is the warnings reported by XFindBugs, while the number
outside the parentheses is the real defects confirmed by us.
6A false positive is a warning reported by XFindBugs that is not a real defect.

84: void around(DrawingView drawingView):
callCommandFigureSelectionChanged(drawingView) {

85: AbstractCommand command =
(AbstractCommand)thisJoinPoint.getTarget();

86: command.hasSelectionChanged = true;
87: proceed(drawingView);
88: }

Figure 10: Misuse Of GetTarget in AJHotdraw: Line 84 – 90
in org.jhotdraw.ccconcerns.commands.UndoableCommand.aj
168: Undoable around(): callCommandGetUndoActivity() {
169: AbstractCommand command =

(AbstractCommand)thisJoinPoint.getTarget();
170: return new

UndoableAdapter(command.getDrawingEditor().view());
171: }

Figure 11: Misuse Of GetTarget in AJHotdraw: Line 168 – 171
in org.jhotdraw.ccconcerns.commands.UndoableCommand.aj

unknown defects. We show the sample code of bug patternAc-
cess Field Before Object Initializationin Figure 12. In this piece of
code, the advice in line 72 intercepts the exception handling block
in line 35. That is, if an exception is throw from line 35, the advice
in line 72 will take the control flow. However, the variablepw used
in line 77 still remains uninitialized (it is intended to initialized in
line 43), and aNullPointerException will be thrown.

34: public ExceptionHandlingAbstractAspect() {
35: try {...} catch (Exception e) {}
41: if(LOG_CATCH_BLOCKS || LOG_THROW_EXCEPTION) {
42: try {...
43: pw = new PrintWriter(fw);
44: }...
45: }
72: before (Exception e): exceptionCatchBlocks(e)

&& if(LOG_CATCH_BLOCKS) {
76: if(thisJoinPoint.getThis() != null) {
77: pw.println(thisJoinPoint.getThis().getClass()

.getName() + " => " + thisJoinPointStaticPart

.getSignature().toShortString());
80: }...
81: }

Figure 12: Access Field Before Object Initialization: Line 76 –
80 in org.hsqldb.aspects.ExceptionHandlingAbstractAspect.aj

In AJHSQLDB, another threeMisuse Of GetTargetbug pattern
instances come from line 2619 to 2627, line 2646 to 2664, and line
2676 to 2685 in theorg.hsqldb.util.DatabaseManagerSwing-
.aj file. Due to the space limitation, we do not show the code here.

Glassbox. Glassbox is a widely-used troubleshooting agent for
Java applications that automatically diagnoses common problems.
It is well tested and the latest version available is 2.0GA. XFind-
Bugs finds one defect, falling intoThe Scope Of Advicebug pattern
category. We show the sample code in Figure 13.

In Figure 13, the advice parametersql has been modified within
advicebefore(Statement, String sql) :topLevelDynami-
csSqlExcc(statement, sql). However, like method parame-
ters, advice parameters are local to the advice. In other words,
reassigningsql in the above example will have no effect outside
the advice. Therefore, XFindBugs treats it as a potential defect and
generates a warning with priorityLow.
AspectJ Benchmark Suite and Design Patterns.In theTetris,
Dcm, and LawOfDemeter programs in the benchmark suite, XFind-
Bugs detects 34The Multiple Advice Invocationdefects in total.
For example, inTetris, two data dependent advicesLevels.bef-
ore(): newgame() andCounter.before(): newgame() are
declared without aspect precedence. These two advices will be in-
voked at the same join points during program execution. In such
cases, the advice invocation sequence is not explicitly defined, or
sometimes depends on the compiler. XFindBugs detects such symp-
tom as a bad practice and generates a warning.

74

Table 3: Warnings generated by XFindBugs in subject programs
Name #TMAI #TIL #TSOA #MOG #TROP #AFBI #AFOS #TNP #IGMI #ULIF #TDAM #All %FP

AJHotdraw 8 (8) 0 (0) 0 (6) 2 (2) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 10 (16) 37.5%
AJHSQLDB 142(142) 0 (0) 0 (0) 3 (3) 1 (1) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 147(147) 0%

GlassBox 0 (1) 0 (0) 1 (6) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (7) 85.7%
AspectJBenchmarks 34 (34) 0 (0) 0 (2) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 34 (36) 5.5%

abcBenchmarks 60 (60) 3 (3) 0 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 63 (64) 1.56%
DesignPatterns 0 (0) 0 (0) 2 (10) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 2 (10) 80%
AspectJBugzilla 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 0 (0) 1 (1) 2 (2) 1 (1) 1 (1) 1 (1) 7 (7) 0%

#All 244(245) 3 (3) 3 (25) 5 (5) 2 (2) 1 (1) 1 (1) 2 (2) 1 (1) 1 (1) 1 (1) 264(287) 8.0%
%FP 0.4% 0% 88% 0% 0% 0% 0% 0% 0% 0% 0% 8.0% N/A

182: before(Statement statement, String sql) :
topLevelDynamicSqlExec(statement, sql) {

183: if (sql==null) {
184: sql = "NULL dynamic sqlstatement";
185: }
186: ...
187: }

Figure 13: The Scope Of Advice: Line 183 – 185 in glass-
box.monitor.resource.JdbcMonitor.aj

In NullCheck, XFindBugs finds six defects falling into theThe
Infinite Loopbug pattern. We show the sample code of one defect in
Figure 14. The method call ofthisJointPoint.getSignature()
in line 78 is intercepted by the pointcutmethodsThatReturnOb-
jects in line 71. Therefore, an infinite calling loop (thisJoinPoi-
nt.getSignature() → around(): methodsTahtReturnOb-
jects() → thisJoinPoint.getSignature()) is formed, which
will result in a StackOverflowError. In this case, XFindBugs
generates a warning and suggests programmers to add!within(as-
pectname) to the pointcut designator, to prevent the defect.
71: Object around(): methodsThatReturnObjects() {
78: ...thisJoinPoint.getSignature().toShortString() ...
84: }

Figure 14: The Infinitive Loop in NullCheck
There are also several kinds of warnings reported by XFindBugs

in the AspectJ benchmark suite and AspectJ implementation of de-
sign patterns. These warnings are summarized in Table 3.

5.6 False Positives
We manually check each warning reported by XFindBugs in the

source code and count the possible false positives. As shown in
Table 3 (column %FP), the overall false positive ratio is 8.0%. For
warnings generated on one specific bug pattern, the false positive
ratio ranges from 0% to 88%. We can observe that most warnings
reported inAJHotdraw, AJHSQLDBandAspectJ benchmark su-
ite are valid. While for theGlassBox application, the false pos-
itive ratio is very high (85.7%). This false positive ratio might be
related to the maturity of the investigated subject. For example,
GlassBox has experienced many releases and is widely used in
commercial applications, so it has nearly become a bug-free soft-
ware. On the other hand, we find warnings on bug patterns like
The Scope of Advicehave a high false positive rate, due to the com-
plexity and variance of assignment instructions for different types
inside the advice body.

5.7 Experiment Conclusion
We have demonstrated the effectiveness of XFindBugs on a num-

ber of non-trivial AspectJ applications. XFindBugs scales well to
over 300KLOC, and not only confirms the reported bugs in the lit-
erature, but also reports 257 previously unknown defects. We be-
lieve the potential defects (including some severe bugs) found by
XFindBugs are valuable for programmers to improve the software
quality. Especially for large AspectJ applications, the help of tools
like XFindBugs should be undeniable.

6. RELATED WORK

We next discuss some related work in the areas of bug pattern
and static bug finding techniques.

Bug patterns [25, 37] are erroneous code idioms or bad coding
practices that have been proved fail time and time again. How-
ever, most of the previous research is focused on Java programming
language [17, 25, 26]. Allen [13] summarized more than 14 cate-
gories of bug patterns in Java and later more pattern classifications
were identified by the FindBugs research group at the University of
Maryland. Farchi [17] and David [24]et al. also showed a cata-
log of concurrent bug patterns and how to find them. In our earlier
work [37], we identified six bug patterns in AspectJ programs as a
preliminary study, but without tool supports and empirical evalua-
tions on real-world programs. In this paper, we focus on the unique
aspectual features and present a systematic list of bug patterns for
AspectJ programs. Our defect detection prototype XFindBugs has
also been successfully applied to several large-scale applications.

There is also a lot of work [19, 26, 29, 35] devoted to static bug
finding techniques. Static techniques range in their complexity and
their ability to identify or eliminate bugs. The bug patterns pro-
posed in [25] are a very practical technique for finding bugs in real-
word software.Formal Proof [16] is an effective static technique
for eliminating bugs. Though the existence of a correctness proof
is the best guarantee that the program does not contain bugs, the
difficulty in constructing such a proof is still prohibitive for most
programs.Partial verification[23] techniques have been proposed
to prove that some desired properties of a program hold for all pos-
sible executions. Compared to these techniques, the bug pattern
technique used in this paper isunsound. It can identifyprobable
bugs, but may also produce false positives and false negatives.

7. CONCLUDING REMARKS
In this paper, we presented XFindBugs, an eXtended FindBugs

for AspectJ, to detect potential defects in AspectJ software. In our
current implementation, XFindBugs supports a catalog of 17 bug
patterns, which cover common error-prone features of AspectJ pro-
grams. Our experience of using XFindBugs on several large-scale
AspectJ applications highlights the practical issues of this tool. The
experience also evidences most of the bug patterns presented in this
paper do exist in real-world software systems.

In the future, we plan to identify more bug patterns in aspect-
oriented software systems, and incorporate new bug detectors into
XFindBugs. We would also like to investigate other sophisticated
analyses (such as the verification approach [22, 28] and dynamic
slicing [38]), to refine our existing detectors in XFindBugs to make
them more accurate.

To encourage evaluation and further research in these and other
directions, the source code of our bug detectors is available at

http://cse.sjtu.edu.cn/~zhang/XFindBugs/

Acknowledgements.This work was supported in part by National High Tech-
nology Development Program of China (Grant No. 2006AA01Z158), National Natural
Science Foundation of China (NSFC) (Grant No. 60673120), and Shanghai Pujiang
Program (Grant No. 07pj14058). We would like to thank Cheng Zhang, Qingzhou
Luo, and Xin Huang for their valuable discussions on this work. We would also like
to thank the anonymous PASTE 2008 reviewers for their insightful comments.

75

8. REFERENCES
[1] AJHotDraw.http:

//sourceforge.net/projects/ajhotdraw .
[2] AJHSQLDB.

http://sourceforge.net/projects/ajhsqldb .
[3] AspectJ.http://eclipse.org/aspectj/ .
[4] AspectJ Bugzilla.

http://www.eclipse.org/aspectj/bugs.php .
[5] Aspectj development tools (ajdt).

http://www.eclipse.org/ajdt/ .
[6] AspectJ Programming Guide.http://www.eclipse.

org/aspectj/doc/released/progguide .
[7] Eclipse.http://www.eclipse.org/ .
[8] FindBugs.http://findbugs.sourceforge.net/ .
[9] Glassbox.http://www.glassbox.com/ .

[10] JLint. http://jlint.sourceforge.net/ .
[11] PMD. http://pmd.sourceforge.net/ .
[12] C. Allan, J. Tibble, P. Avgustinov, A. Christensen,

L. Hendren, S. Kuzins, O. Lhoták, O. de Moor, D. Sereni,
and G. Sittampalam. Adding trace matching with free
variables to AspectJ.Proceedings of the 20th annual ACM
SIGPLAN conference on Object oriented programming
systems languages and applications, pages 345–364, 2005.

[13] E. Allen.Bug patterns in Java. Apress, 2002.
[14] N. Ayewah, W. Pugh, J. Morgenthaler, J. Penix, and Y. Zhou.

Evaluating static analysis defect warnings on production
software.Proceedings of the 7th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and
engineering, pages 1–8, 2007.

[15] N. Ayewah, W. Pugh, J. Morgenthaler, J. Penix, and Y. Zhou.
Using FindBugs on production software.OOPSLA 07:
Companion to the 22nd ACM SIGPLAN conference on
Object oriented programming systems and applications
companion, 2007.

[16] B. Cook, A. Podelski, and A. Rybalchenko. Termination
proofs for systems code. InPLDI ’06: Proceedings of the
2006 ACM SIGPLAN conference on Programming language
design and implementation, pages 415–426, New York, NY,
USA, 2006. ACM.

[17] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and how
to test them.Parallel and Distributed Processing
Symposium, 2003. Proceedings. International, page 7, 2003.

[18] R. Filman et al.Aspect-oriented software development.
Addison-Wesley, Boston Toronto, 2005.

[19] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended static checking for Java. In
Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation
(PLDI’2002), volume 37, pages 234–245, June 2002.

[20] J. Hannemann and G. Kiczales. Design pattern
implementation in Java and aspectJ.Proceedings of the 17th
ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages
161–173, 2002.

[21] W. Havinga, I. Nagy, L. Bergmans, and M. Aksit. A
graph-based approach to modeling and detecting
composition conflicts related to introductions.Proceedings
of the 6th international conference on Aspect-oriented
software development, pages 85–95, 2007.

[22] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software
verification with blast. InIn Tenth International Workshop on
Model Checking of Software (SPIN), volume 2648 of Lecture
Notes in Computer Science, pages 235–239. Springer-Verlag,
2003., 2003.

[23] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction.SIGPLAN Not., 37(1):58–70, 2002.

[24] D. Hovemeyer and W. Pugh. Finding concurrency bugs in
java.2004 PODC Workshop on Concurrency and
Synchronization in Java Programs.

[25] D. Hovemeyer and W. Pugh. Finding bugs is easy.ACM
SIGPLAN Notices, 39(12):92–106, 2004.

[26] D. Hovemeyer and W. Pugh. Finding more null pointer bugs,
but not too many.Proceedings of the 7th ACM
SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering, pages 9–14, 2007.

[27] G. Kiczales et al. Aspect-oriented programming.ACM
SIGSOFT Software Engineering Notes, 26(5):313, 2001.

[28] S. Krishnamurthi, K. Fisler, and M. Greenberg. Verifying
aspect advice modularly.SIGSOFT Softw. Eng. Notes,
29(6):137–146, 2004.

[29] N. Rutar, C. Almazan, and J. Foster. A Comparison of Bug
Finding Tools for Java.Proceedings of the 15th International
Symposium on Software Reliability Engineering
(ISSREąŕ04), pages 245–256.

[30] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum, and
G. Rothermel. Predicting accurate and actionable static
analysis warnings: an experimental approach. InICSE ’08:
Proceedings of the 30th international conference on
Software engineering, pages 341–350, New York, NY, USA,
2008. ACM.

[31] H. Shen, S. Zhang, and J. Zhao. An empirical study of
maintainability in aspect-oriented system evolution using
coupling metrics. InProc. 2nd IEEE Theoretical Aspects of
Software Engineering Conference (TASE 2008), June 2008.

[32] H. Shen, S. Zhang, J. Zhao, J. Fang, and S. Yao. XFindBugs:
eXtended FindBugs for AspectJ. Technical Report
TR-SJTU-CSE-08-06, Center for Software Engineering,
Shanghai Jiao Tong University. Download:
http://cse.sjtu.edu.cn/XFindBugs, July 2008.

[33] T. Xie and J. Zhao. A framework and tool supports for
generating test inputs of AspectJ programs.Proceedings of
the 5th international conference on Aspect-oriented software
development, pages 190–201, 2006.

[34] G. Xu and A. Rountev. Regression Test Selection for AspectJ
Software.Proceedings of the 29 th International Conference
on Software Engineering, 20(26):65–74, 2007.

[35] M. Young and R. Taylor. Rethinking the taxonomy of fault
detection techniques.Proceedings of the 11th international
conference on Software engineering, pages 53–62, 1989.

[36] S. Zhang, Z. Gu, Y. Lin, and J. Zhao. Change impact analysis
for AspectJ programs. InProc. 24th IEEE International
Conference on Software Maintenance, Sep 2008.

[37] S. Zhang and J. Zhao. On Identifying Bug Patterns in
Aspect-Oriented Programs.Computer Software and
Applications Conference, 2007. COMPSAC 2007-Vol. 1. 31st
Annual International, 1, 2007.

[38] X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic slicing
algorithms. InICSE ’03: Proceedings of the 25th
International Conference on Software Engineering, pages
319–329, Washington, DC, USA, 2003. IEEE Computer
Society.

76

