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Abstract

Program call graph representation can be used to sup-
port many tasks in compiler optimization, program compre-
hension, and software maintenance. During software evo-
lution, the call graph needs to remain fairly precise and be
updated quickly in response to software changes. In this
paper, we present an approach to incremental update, in-
stead of exhaustive analysis of the initially constructed call
graph in AspectJ software. Our approach first decomposes
the source code edits between the updated and initial soft-
ware versions into a set of atomic change representations,
which capture the semantic differences. Then, we explore
the relationship between atomic changes and call graph
to incrementally update the initially constructed graph, in-
stead of rebuilding it from the ground up. We implement
the reanalysis approach on top of the ajc AspectJ compiler
and perform an empirical study on 24 versions of eight As-
pectJ benchmarks. The experiment result shows that our
approach can reduce a large portion of unnecessary reanal-
ysis cost as program changes occur, and significant savings
are observed for the incremental reconstruction of AspectJ
call graph in comparison with an exhaustive analysis, with
no loss in precision.

1. Introduction

Call graph construction is a key task required by many
approaches to whole program optimization and understand-
ing [24]. Given a program call graph representing the pos-
sible callees at each call site, interprocedural analysis can
typically provide valuable information for compiler opti-
mization, program comprehension, and software mainte-
nance tasks. Using a call graph, one can remove unreach-
able methods from the main method, replace dynamically
dispatched method calls with direct method calls, inline
method calls for which there is a unique target, and perform
more sophisticated optimizations. In the context of soft-

ware maintenance work, interprocedural analysis involving
program call graph representation is also typically used in
software testing [26, 27], bug finding [22, 25], change im-
pact analysis [18, 29] and other activities.

During system evolution, software change is an essen-
tial operation that either introduces new functionalities or
fixes bugs in the existing system, or modifies the former
implementation if the requirements were not correctly ad-
dressed. As changes occur during the software life cycle,
the call graph representation for the whole program may
also change. Particularly, in an object-oriented program,
due to the extensive use of sub-typing and dynamic dis-
patch, the nontrivial combination of small changes may af-
fect the whole call graph. Though many call graph analysis
approaches [8, 10, 13, 19, 24] have been presented in the lit-
erature, a common characteristic of these techniques is that
they need to perform a global exhaustive analysis, i.e., they
analyze the whole program code to construct the call graph.
Given the unnecessary cost of computing a call graph with
sufficient precision every time when change occurs, devel-
oping an incremental call graph construction algorithm with
acceptable cost is desirable.

Aspect-Oriented Programming (AOP) [16] has been pro-
posed as a technique for improving separation of crosscut-
ting concerns in software design and implementation. A
typical AspectJ program can be divided into two parts: base
code which includes classes, interfaces, and other language
constructs as in Java, and aspect code which includes as-
pects for modeling crosscutting concerns in the program.
With the inclusion of join points, an aspect woven into the
base code is solely responsible for a particular crosscut-
ting concern, which raises the system’s modularity. When
aspect-oriented features are added to an object-oriented pro-
gram, or when an existing aspect-oriented program is mod-
ified, the existing call graph representation needs to be up-
dated correspondingly. However, the existence of aspectual
features complicate the analysis, since it can change dra-
matically the behavior of the original code as well as its
call graph structure - e.g. without any change to the origi-
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nal Java code, an aspect can arbitrarily change the pre- and
post- conditions of many methods and thus change the call-
ing relationship between the call graph nodes. Moreover,
the inherent intricacies of AspectJ semantics, such as inter-
type declaration, make it even more complex to analyze the
calling relationship and perform incremental reanalysis for
AspectJ software.

In this paper, we present a new source-code-level (static)
call graph construction approach for AspectJ software. Un-
like the previous approaches that rely on global analysis of
the whole program, we reuse results from previous anal-
ysis to update the call graph in an attempt to perform an
amount of work proportional to the source changes. We
assume that a call graph has been exhaustively constructed
for the initial software version, and after a session of source
modifications, the incremental call graph construction al-
gorithm is invoked according to program changes without
global reanalysis. In our approach, given the updated and
initial AspectJ software versions, we first decompose the
source changes between these two versions into a set of
atomic change representations [25, 29], which captures the
semantic differences. Then, we exploit the relationship be-
tween atomic changes and AspectJ call graph, to update the
initially constructed graph. As a result, a large portion of
unnecessary reanalysis can be avoided and significant sav-
ings are observed in our experimental evaluation.

To our best knowledge, our work is the first attempt to
address the incremental call graph reanalysis problem for
AspectJ software. Our main contributions are threefold: (1)
we choose a widely used call graph construction algorithm
CHA [10] as basis, and present its corresponding call graph
incremental reanalysis algorithm, (2) a call graph incremen-
tal renalysis tool that implements this algorithm using the
ajc AspectJ compiler [2], and (3) an experimental study on
24 versions of eight AspectJ benchmarks. The results in-
dicate our incremental algorithm can effectively reduce the
cost of call graph construction.

2. Background

We next use an example to briefly introduce the back-
ground of AspectJ semantics and the atomic change repre-
sentation, which is the foundation of our reanalysis algo-
rithm.

2.1. AspectJ Semantics

Figure 1 shows a small AspectJ program containing
classes A, B, C, and aspect M. Here, we assume there is a
sequence of edits to the original program in Figure 1. The
edits are all new added and marked by underline.

A join point in AspectJ is a well-defined point in the ex-
ecution that can be monitored - e.g. a call to a method,

class A { public class Main{
public int i, j; public static void main(){
public void m() {i++;} A a = new A();
public void n() {j++;} B b = new B();

} fun1(b);
fun2();

class B extends A { } }

class C extends B { static void fun1(A a){
public void m(){ i = i+3; } a.m();
public void n(){ a.n();

if(i > 0) j = j+2; m(); }
}

} static void fun2(){
B b2 = new C();
b2.m();

}
aspect M { }
public void B.m() { i = i+2;}
pointcut callPoints(A a):
execution(* C.n()) && this(a);

after(A a): callPoints(a) { a.j++;}
}

Figure 1. A sample AspectJ program.

method body execution, etc. Sets of join points may be rep-
resented by pointcuts, implying that such sets may crosscut
the system. Pointcuts can be composed and new pointcut
designators can be defined according to these compositions.
Advice is a method-like mechanism that consists of instruc-
tions that execute before, after, or around a pointcut. An
aspect is a modular unit of crosscutting implementation in
AspectJ. Each aspect encapsulates functionality that cross-
cuts other classes in a program. Moreover, an aspect can
use an intertype construct to introduce methods, attributes,
and interface implementation declarations into classes.

Example: in Figure 1, pointcut callPoints contains a
join point when C.n() is executed if the runtime this ob-
ject type is A. The aspect M in Figure 1 declares an advice,
which is used to increase the value of a.j by one after each
time C.n() is executed. Aspect M also defines an intertype
method B.m(), which overrides the existing A.m().

The AspectJ implementation ensures that the aspect and
base code run together in a properly coordinated fashion.
A key component is an aspect weaver, which ensures that
applicable advice runs at appropriate join points. More in-
formation about AspectJ can be found in [3].

2.2. Atomic Change Representation

In our previous work [29], we identified a catalog of
atomic changes for AspectJ programs shown in Table 1.
Those atomic changes represent the source modifications
at a coarse-grained model, which is amenable to analysis.
Most of the atomic changes in Table 1 are self-explanatory
except for AIC. Atomic change AIC captures the advice
invocations changes. It reflects the semantic differences
between the original and the edited programs; and indicates
that the advice invoking at the certain join points has been
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Abbreviation Atomic Change Name
AA Add an Empty Aspect
DA Delete an Empty Aspect
INF Introduce a New Field
DIF Delete an Introduced Field
CIFI Change an Introduced Field Initializer
INM Introduce a New Method
DIM Delete an Introduced Method
CIMB Change an Introduced Method Body
AEA Add an Empty Advice
DEA Delete an Empty Advice
CAB Change an Advice Body
ANP Add a New Pointcut
CPB Change a Pointcut Body
DPC Delete a Pointcut
AHD Add a Hierarchy Declaration
DHD Delete a Hierarchy Declaration
AAP Add an Aspect Precedence
DAP Delete an Aspect Precedence
ASED Add a Soften Exception Declaration
DSED Delete a Soften Exception Declaration
AIC Advice Invocation Change

Table 1. A catalog of atomic changes in As-
pectJ

changed. The AIC changes are generated in situations
where <advice, join point> pairs are added or removed as
a result of source code changes. The formal definition of
AIC is shown as follows:

AIC = {<j,a>|<j,a> ∈
((J × A − J’ × A’) ∪ (J’ × A’ − J × A))}

(1)

where J and A are the sets of join point and advices in
the original program, and J′ and A′ are the sets of join point
and advices in the modified program. J × A denotes the
matched join points and advice tuple set in the original pro-
gram, while J′ × A′ denotes the matched tuple set in the
updated program version. Apart from aspect code changes,
base code changes in Java are defined in [18] and [20].

Additionally, there are syntactic dependencies between
atomic changes. That is, an atomic change C1 is dependent
on another atomic change C2 (denoted as, C2 � C1), if ap-
plying C1 to the original version of the program without
also applying C2 will cause a syntactically invalid program
that contains some, but not all of the atomic changes. Those
semantic dependence rules are summarized in [18, 29].

Example: Figure 2 shows the atomic changes with their
dependence relationships inferred from two versions of the
sample program. Each atomic change is shown as a box,
where the top half of the box shows the category of the
change, and the bottom half shows the method, field or ad-
vice involved. An arrow from an atomic change C1 to C2

indicates that C2 is dependent on C1.

Figure 2. Atomic changes inferred from the
sample program, with their dependence rela-
tionships

3. Call Graph Foundations

We next present the call graph representation used in this
paper for Java and AspectJ programs briefly.

3.1. Call Graph for Java

In this paper, we focus on the static call graph analysis
technique, that is, the objective of our analysis is to deter-
mine a call graph at compile time. One of the most im-
portant features of object-oriented programming languages
like Java is the dynamic dispatch of methods based on the
run-time type of an object. As for Java and other object-
oriented languages, an important optimization problem is to
statically determine what methods can be invoked by virtual
method calls. We choose one efficient and widely used call
graph construction algorithm, named class hierarchy anal-
ysis [10] (and its variant [15] for AspectJ) as our analysis
foundation.

Class Hierarchy Analysis (CHA) is a standard method
for conservatively estimating the run-time types of calling
receivers [10]. In CHA, if a method is reachable, and a
virtual call a.f() occurs in the body of this method, then
every method with name f that is inherited by a subtype of
the static type of a is also reachable.

Example: for the source in Figure 1, when using CHA
algorithm to construct the call graph, method fun1(A a)

will have three callers A.m(), B.m(), and C.m(). Simi-
larly, fun2() will have two callers B.m() and C.m(), be-
cause b2 has a static declared type B.

3.2. Call Graph for AspectJ Software

We build aspect-aware call graph [15] as follows. We
employ CHA algorithm to construct call graph of the base
code. For the aspect code, we consider the advice as a
method-like node, namely advice node, with matching re-
lationship represented by an edge from the join point (we
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Figure 3. (a) Call graph for before and after
advice, and (b) Call graph for around advice.

call such kind of edge a shadow edge). The complete call
graph of AspectJ software is formed after the call graph of
aspect code is connected into the base code call graph using
the join point matching information.

Example: we take three typical aspectual constructs be-
fore, after, and around to show the basic idea of aspect-
aware call graph construction.

before and after advice. We add calling edges before
or after the corresponding call site1 to model such implicit
calls introduced by AOP. For the following code snippet:

void m() { n(); }
before(): call(* *.n()) { ... }
after(): execution(* *.n()) {... }

Its corresponding call graph is shown as Figure 3(a). No-
tice that we treat call and execution join point differ-
ently. The former is invoked at the call site while the latter
is invoked at the entry or exit point of the advised method,
that is, the calling edge of execution join point is con-
nected to the method it weaves but not the call site.

around advice. The around advice is more complex
than before and after advices. We use two additional
call sites to represent proceed call and proceed return

nodes. For the following code snippet:

void m() { n(); }
void around(): call(* *.n()) { ...; proceed(); }

Its corresponding call graph shows in Figure 3(b). We
use two kinds of calling edges (marked by Proceed Call
and Proceed Return) to represent the proceed construct in
AspectJ.

1Call site is a dummy node in our call graph representation which
means there is a call relationship between caller and callee, and is used
to differentiate call join point and exec join point.

4. Incremental Reanalysis Algorithm

In this section, we present our incremental reanalysis ap-
proach. In our approach, we first classify atomic changes
based on their different effects on call graph structure in
Section 4.1. We then match each affecting atomic change
to corresponding call graph node or edge, and update the
initial constructed graph in Section 4.2. A pseudo code of
our algorithm is given in Section 4.3. Finally, we give a step
by step example in Section 4.4.

4.1. Atomic Change Classification

To facilitate our analysis, we first classify atomic
changes into the following five categories.

Method-related changes. There are three kinds of
method-related atomic changes, named AM, DM, and CM.
Intuitively, adding or deleting a method will affect the call
graph structure. For the CM change, we further classify it
into three subcategories CM-Add, CM-Del, and CM-Local.
CM-Add is the CM change which adds new method call
statements in its body; CM-Del is the CM change which
deletes an existing method call statement in its body; and
CM-Local is the CM change which only has local source
change. We will ignore all CM-Local changes during anal-
ysis. Note that a CM change could be both a CM-Add
and CM-Del category, since it can add and delete method
call statements simultaneously during evolution. In as-
pect code, there are also three kinds of method-related
changes, named INM, DIM, and CIMB. Similarly, we
classify CIMB change into three subcategories CIMB-Add,
CIMB-Del and CIMB-Local; in which CIMB-Local will not
affect the call graph structure.

Advice-related changes. There are three kinds of advice-
related changes, named AEA, DEA, and CAB. Like the
CM change, we classify CAB into three subcategories
named CAB-Add, CAB-Del, and CAB-Local; in which CAB-
Local does not affect the call graph.

Dynamic dispatch changes. We preserve the precision
of CHA algorithm during the incremental reanalysis by ex-
ploring the LC changes. According to the definition [20],
LC abstracts any kind of source edits that would affect dy-
namic dispatch behavior, including adding or deleting meth-
ods, and adding or deleting inheritance relations. To fa-
cilitate our analysis, we borrow the triple LookUp [20] in
the form of <runtimeReceiverType, staticMethodSignature,
actualMethodBound>. For example, in a triple like <C,
A.f(), B.f()>, A is an ancestor of B or A is B, A.f() is
a method declared in the hierarchy, B is the nearest super-
class of C containing a definition of method f(), C is the
run-time type of the receiver, A.f() is the method that is
statically referred to in the method call, and B.f() is the
actual bounded method. In our example in Figure 1, we
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have a LookUp <C, A.n(), A.n()> in the old version. Af-
ter adding a method n() to class C, the new LookUp triple
become <C, A.n(), C.n()>.

Dynamic dispatch behavior changes might lead to
adding or deleting edges in the virtual call site. We clas-
sify LC in to two categories: LC-Add and LC-Del. LC-Add
represents the LC changes which will add edges into the
call graph, while LC-Del represents the LC changes which
will delete edges from the call graph. The formal definitions
of LC-Add and LC-Del show as follows.

LookUppreserve = {<Cold, A.f(), B.f()>|
<Cold, A.f(), B.f()> ∈ LookUpold∧
<Cnew, A.f(), B.f()> ∈ LookUpnew,

∀Cold ∈ classes in vold, Cnew ∈ classes in vnew}
LC-Add = LookUpnew − LookUpold

LC-Del = LookUpold − LookUpnew − LookUppreserve

In the equation of LookUppreserve, Cold is the class set
in the old version, and Cnew is the class set in the new ver-
sion. LookUppreserve contains those unchanged LookUp
triples during evolution, while LC-Add and LC-Del repre-
sents those new added and deleted ones, respectively.

Advice invocation changes. Changes to the base or
aspect code may cause lost or additional matches of join
points, which may result in accidental advice invoca-
tions [29]. As shown in section 2.2, all the information
related to these changes are reflected by AIC change. We
classify AIC into two categories, AIC-Add and AIC-Del,
which represents the newly added invocation and deleted
<jonpoint, advice> pairs during software evolution, re-
spectively.

Using the equation 1 and terms in Section 2.2, we define
AIC-Add and AIC-Del as follows:

AIC-Add = {<j,a>|<j,a> ∈ (J × A − J’ × A’)}
AIC-Del = {<j,a>|<j,a> ∈ (J’ × A’ − J × A)}

Ignored changes. We ignore other changes (not men-
tioned above) that will not directly affect the call graph
structure, like DI, CI, AA, and AC. Note that changes to the
pointcut body are also not considered, because their effects
to the call graph could be reflected by AIC changes. Sim-
ilarly, class hierarchy-related changes like AHD and DHD
will not be handled specially, since their effects are reflected
by LC change.

4.2. Match Atomic Change to Call Graph

We next match each change to the initial constructed call
graph, to decide which parts need to be updated. The match-
ing process consists of the following four parts.

AM, INM, and AEA changes. Changes like AM, INM,
and AEA require us to add new nodes to the original call

graph, while changes like DM, DIM, and DEA indicate
that we need to delete existing nodes and their incom-
ing/outgoing edges. For example, the new added intertype
method B.m() of aspect M in Figure 1 requires us to add a
corresponding node to the initial graph.

CM, CIMB, and CAB changes. Changes like CM,
CIMB, and CAB require us to update corresponding
method, intertype method, or advice nodes. Here, we use
the category classification information (e.g. CM-Add) to
find what kind of changes (e.g. adding or deleting call rela-
tions) have taken place. Then, we add or delete correspond-
ing edges in call graph. For example, in Figure 1, method
C.n() has been changed. A method call to C.m() has been
added in its method body. We classify this change to be a
CM-Add category, and then add a new edge from C.n() to
C.m() in the call graph.

LC changes. We use the LC-Add and LC-Del change
sets to update corresponding virtual call sites. For each
tuple <C,A.f(),B.f()> ∈ LC-Add, our algorithm finds
all graph nodes which call A.f() and add a new callee
node B.f() for them (if this node has not been added yet).
For each tuple <C,A.f(),B.f()> ∈ LC-Del, our algo-
rithm finds all callers which call B.f() and deletes their
callee node A.f(). For example, in Figure 1, we have
one LC( <C,A.n(),C.n()>) change, which is classified
as LC-Add category. Our algorithm finds the graph node
Main.fun1() is the caller of A.n(). Then, we add a new
callee node C.n() for node Main.fun1().

AIC changes. The AIC change, representing as tu-
ples <join point, advice>, indicates that the advice invok-
ing at the above join point has been changed. In such
case, we find each affected join point, then add or delete
shadow edges between join point and advice. For exam-
ple, in Figure 1, suppose that we also changed pointcut
callPoints(A a): execution(* C.n()) && this(a)
to pointcut callPoints(A a): execution(* A.n())
&& this(a). We will get two AIC changes, in which
AIC<A.n(), after advice> belongs to AIC-Add cat-
egory and AIC<C.n(), after advice> belongs to AIC-
Del. Our algorithm finds the graph nodes A.n() and C.n()
which correspond to the affected join points. Then, we add
a shadow edge from A.n() to the after advice and delete
the edge between C.n() and the after advice.

4.3. Incremental Reanalysis Algorithm

This section presents our incremental reanalysis algo-
rithm. Figure 4 shows the pseudo code of the algorithm.

The algorithm takes two inputs: an original call graph
and a set of atomic changes. The algorithm first uses a
helper function classify to classify atomic change set and
prune out all the ignorable changes.

We first add new nodes to the initial constructed graph,
representing AM, INM, and AEA changes, and then delete
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existing graph nodes and edges according to the DM, DIM,
and DEA changes. This part corresponds to lines 4 to 9 in
Figure 4. Here, addNode and deleteNode are helper func-
tions which simply add and delete nodes in the original
graph.

After that, we update the incoming or outgoing edges
for each modified node (represented by CM, CIMB, and
CAB changes). For each node, we add or delete its callers
or callees according to the change category (lines 10 to 18
in Figure 4). Here, we use helper functions addCall and
deleteCall to perform such actions.

Afterwards, we update each virtual call site using LC
(LC-Add and LC-Del) changes. We use LC to preserve the
precision of CHA algorithm. In lines 21 and 23 of Figure 4,
we use helper functions addDynamicDispatch and delete-
DynamicDispatch to deal with dynamic dispatches. Each
function takes three parameters: A is the static referred type,
B is the dynamic bounded type, and m is the virtual method
node to be updated.

Finally, we update the shadow edges in the initial call
graph using the AIC change. An AIC change contains
all weaving information, including the adding and delet-
ing relationship between advice and join point. In lines
26 to 34, we use helper functions addAdvice and deleteAd-
vice to update shadow edges between join points and advice
nodes. The first input methodSet of the function contains
all methods which are matched by a join point. The second
input advice is the corresponding advice which is invoked
at that join point.

4.4. Put It Together: A Full Example

With respect to our example in Figure 1, we demon-
strate the whole reanalysis process in Figure 5. Figure 5(a)
is the initial constructed call graph before source editing,
and Figure 5(e) is the updated call graph after reanalysis.
For simplicity, we omit the call site nodes and do not dis-
tinguish method node and advice node, as well as shadow
edge and normal call graph edge. The red shadow nodes in
Figure 5 are newly added, while the red dashed edges are
the updated ones. In the first step, three new nodes which
represent C.n(), after(A a):callPoints, and B.m()

are added (Figure 5(b)). In the second step, an new edge
from C.n() to C.m() is added by a CM-Add change (Fig-
ure 5(c)). In the third step, three LC-Add changes lead to
three more virtual call edges, namely fun1(A a) to B.m()
and C.n(), fun2() to B.m() (Figure 5(d)). Finally, a new
shadow edge is added from method node C.n() to advice
after(A a):callPoints.

5. Empirical Evaluation

To investigate the effectiveness of our proposed ap-
proach, we implemented the analysis algorithm on top of

Algorithm BuildIncrementalCG

Input: the orginal call graph: cg, a set of
atomic changes: acSet.

Output: the updated call graph: cg’.

1: function INCREMENTALCG(cg, acSet)
2: cg′ ← cg

3: classify(acSet);
4: for all ac ∈ AM ∪ INM ∪ AEA do
5: addNode(cg′, ac)
6: end for
7: for all ac ∈ DM ∪ DIM ∪ DEA do
8: deleteNode(cg′, ac)
9: end for

10: for all ac ∈ CM ∪ CIMB ∪ CAB do
11: caller ← getCaller(ac)
12: callee← getCallee(ac)
13: if ac ∈ CM-Add ∪ CIMB-Add ∪ CAB-Add then
14: addCall(cg′, caller, callee)
15: else
16: deleteCall(cg′, caller, callee)
17: end if
18: end for
19: for all ac ∈ LC<C,A.m(),B.m()> do
20: if ac is LC-Add then
21: addDynamicDispatch(A, B, m)
22: else
23: deleteDynamicDispatch(A, B, m)
24: end if
25: end for
26: for all ac ∈ AIC do
27: advice← getAdvice(ac)
28: methodSet← getMatchedM(ac)
29: if ac is AIC-Add then
30: addAdvice(methodSet, advice)
31: else
32: deleteAdvice(methodSet, advice)
33: end if
34: end for
35: return cg′

36: end function

Figure 4. Call Graph Incremental Reanalysis
Algorithm

the ajc compiler [2]. We performed an experimental study
on AspectJ benchmarks, ranging from hundreds to thou-
sands of lines of code. The empirical study indicates that
we are able to achieve an average 76% decrease in the call
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Figure 5. Incremental call graph reanalysis: a full example.

graph reanalysis cost, compared with exhaustive analysis.

5.1. Subject Programs

We use 24 versions of eight AspectJ benchmarks col-
lected from a variety of sources as our subject programs.
The first three and the spacewar example are included in
the AspectJ compiler example package [2]. Other programs
are obtained from the abc benchmark package [1]. This
group of benchmarks have also been widely used by other
researchers to evaluate their work [12,26,27]. For each pro-
gram, we make the first version v1 a pure Java program by
removing all aspectual constructs. Table 2 shows the num-
ber of lines of code in the original program (#Loc), the num-
ber of versions (#Ver), the number of methods (#Me), and
the number of shadows (#Shad).

Programs #Loc #Ver #Me #Shad
Quicksort 111 3 18 15
Figure 147 4 23 5
Bean 199 3 12 8
Tracing 1059 4 44 32
NullCheck 2991 5 196 146
Lod 3075 2 220 1103
Dcm 3423 2 249 359
Spacewar 3053 2 288 369

Table 2. Subject Programs

5.2. Procedure

To evaluate our approach, we take each successive ver-
sion pair of an AspectJ benchmark (i.e., v1 and v2, v2 and
v3, etc) and the call graph of the initial version (i.e., the v1

version of v1, v2 pair) as the input of our algorithm. For
each input, we first decompose the changes between two
program versions into a set of atomic changes, and then use
the atomic changes to update the initial constructed graph.
The updated call graph is the output as our analysis result.

5.3. Results

In our previous work on change impact analysis [29]
using the same subject programs, we found that on average
44% of the call graph nodes have been affected. Here,
we count the number of the atomic changes and updated
nodes/edges between two successive versions, and compare
the effectiveness between exhaustive CHA algorithm [10]
and our incremental approach in terms of construction
time. Experimental results are shown in Table 3 and 4. In
these two tables, each AspectJ program version is labelled
with its number - e.g. Q2 corresponds to version v2 of
Quicksort, N4 is version v4 of Nullcheck. The experimental
data between version vn−1 and vn is shown in row vn.

5.3.1. Updated Nodes and Edges. In Table 3, columns
Nodes and Edges indicate the number of call graph nodes
and edges, respectively. Column Atomic Changes and Re-
lated Changes indicate the number of all the atomic changes
between two successive versions, and those atomic changes
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Version Nodes Edges Atomic
Change

Related
Change

Updated
nodes%

Updated
edges%

Q2 12 18 23 14 63% 41%
Q3 12 18 38 22 67% 56%
F2 23 32 22 17 40% 59%
F3 25 31 80 62 81% 93%
F4 45 74 59 43 89% 60%
B2 21 37 35 23 53% 61%
B3 24 37 11 8 48% 40%
T2 36 90 41 27 74% 46%
T3 36 90 72 49 76% 71%
T4 36 86 37 32 48% 62%
N2 157 264 35 31 18% 19%
N3 157 259 7 6 15% 17%
N4 157 298 2 1 30% 15%
N5 157 247 2 1 14% 8%
L2 173 589 1979 1492 70% 77%
D2 183 598 85 58 44% 53%
S2 104 90 72 47 37% 65%

Table 3. Updated call graph nodes and edges
of the incremental approach

that affect the call graph, respectively. The number in
columns Updated nodes and Updated edges are defined as
follows to indicate the effectiveness.

Nupdated =
Nadd + Nchange + Ndelete

Nnew + Ndelete
× 100% (2)

Eupdated =
Eadd + Edelete

Enew + Edelete
× 100% (3)

In this two equations, Nadd, Nchange,Ndelete represent
the number of graph nodes which are added, changed,
or deleted. If a node’s incoming or outgoing edges are
changed, we say it is changed. Eadd and Edelete represent
the number of added and deleted graph edges. Nnew and
Enew are the number of nodes and edges in the call graph of
the updated version (i.e., the vn version of vn−1, vn pair).

We can observe that our incremental approach updates
51% of the call graph nodes and 49% of the call graph
edges on average.

5.3.2. Construction Time. Table 4 shows the construction
time of both exhaustive analysis and incremental approach.
Column Exhaustive Time is the total time cost when using
original CHA algorithm, while column Incremental Time
indicates the time cost of our incremental approach. The
incremental algorithm cost is shown as a percentage com-
pared with the exhaustive algorithm.

We can observe that the average call graph construction
time of our incremental approach is 24% of the exhaustive
analysis cost. But for L2, we reduce only a small portion of
the time cost.

Version Exhaustive Time (ms) Incremental Time%
Q2 281 6%
Q3 104 14%
F2 275 46%
F3 94 33%
F4 333 15%
B2 297 11%
B3 168 9%
T2 276 5%
T3 104 45%
T4 551 6%
N2 521 33%
N3 357 13%
N4 625 10%
N5 484 10%
L2 1953 86%
D2 1156 19%
S2 74 37%

Table 4. Analysis time of exhaustive analysis
and incremental approach (excluding compi-
lation time)

5.4. Discussion

In our experiment, the call graphs constructed by our in-
cremental algorithm are the same with graphs constructed
by the exhaustive algorithm in most cases. The only ex-
ception cases are the L2, N2, and D2 groups. For exam-
ple, in L2, there are 274 call sites and 326 shadow edges
in the call graph constructed by the exhaustive algorithm,
while there are 261 call sites and 315 shadow edges in the
call graph constructed by the incremental algorithm. The
discrepancy is caused by the default constructor changes,
especially changes in the compiler-added <init>() con-
structor. Such compiler-added constructors are not counted
in the atomic change set, but appear as nodes in the call
graph representation. Another cause is due to the pointcut
that crosscuts such default constructors, like the pointcut
declaration call(*.new(..)) in L2. In our implementation,
we ignore such compiler-added shadow edges.

From Table 3, we can find more related atomic changes
will lead to more node and edge updates in most cases.
However, there are some exceptions: in F3, 62 related
changes result in 81% node update, while in F4, 43 changes
lead to 89% update of node; in N4 and N5, one atomic
change results in different amount of updates. We think this
is reasonable: some changes may only affect a small por-
tion of the graph. From Table 4, we can see our incremental
algorithm can result in a great improvement, except for L2.
Because the effectiveness of our approach is not only deter-
mined by the number of the related changes, but also how
many edges these changes have affected, if there are lots of
related changes and most of them affect many edges, the
improvement will be low. The evidence to support our as-
sumption can be found in Table 3, only L2 has both high
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updated edges (77%) number and a large amount of related
changes (1492).

5.5. Threats to Validity

Like any empirical evaluation, this study also has limita-
tions which must be considered. Although we have experi-
mented 24 versions of eight AspectJ benchmarks, which are
well-known examples and the last three ones are among the
largest programs, they are smaller than traditional Java soft-
ware systems. For this case, we cannot claim that these ex-
periment results can be necessarily generalized to other pro-
grams. On the other hand, threats to internal validity maybe
mostly lie in the call graph differences between exhaustive
and incremental algorithm. As discussed in Section 5.4, the
call graph built by our algorithm differ slightly from the ex-
haustively constructed one. Investigating the impact of such
difference on client analyses would be our future topics.

6. Related Work

We next discuss some related work in areas of call graph
construction and incremental analysis techniques.

Call graph construction for AspectJ software. Call
graph construction has been an important area of research
within the programming language and software engineering
community. Various call graph analysis approaches [8, 10,
13, 19, 24] have been proposed in the literature. However,
most of them are focused on procedural or object-oriented
context. Rinard et al [30] proposed a control flow graph
in the classification system for AspectJ programs. They
used a lightweight call graph representation to model be-
fore, after, and around advices based on program transfor-
mation. Sereni and Moor [21] also present a simple call
graph for a simple AOP language, which considers that ba-
sic concepts of invocation relationship of aspects. In [15],
Huang proposed an algorithm for constructing aspect-aware
call graphs. He also presented the corresponding graph con-
struction tool support together with a set of evaluation re-
sults. Our work is based on Huang’s call graph represen-
tation for AspectJ software. However, all the above ap-
proaches use an exhaustive program analysis to build the
AspectJ call graph. In this paper, we reuse the initial con-
structed call graph along with change information to incre-
mentally update the program call graph, to eliminate unnec-
essary analysis cost.

Incremental and demand driven analysis. There is also
a rich body of work on incremental and demand driven pro-
gram analysis. Iterative-based, interval-based, and hybrid
incremental data flow analysis algorithms were first devel-
oped for intraprocedural data flow analysis [6, 23, 28].

Little work has been carried out in incremental analysis
within the object-oriented and aspect-oriented context. Per-
haps the most similar work to ours is Souter and Pollock’s

approach [23] to incrementally updating the call graph of
Java programs. However, they use a relatively expensive
approach - Cartesian Product Algorithm [4] as the analy-
sis basis and transform each source editing as adding and
deleting a call site. As in our work, we use atomic change
representation not just call site deletion and insertion ac-
tions to capture the source changes. The atomic changes
can be used to reflect the semantic differences of source ed-
its and update the initial graph. On the other hand, we use
a more efficient algorithm CHA [10] to construct base code
call graph and consider the unique aspectual features.

Demand driven analysis techniques have also been stud-
ied by many researchers. In particular, these analysis tech-
niques [5,6,11,14] are for compiler optimization of object-
oriented programs. Agrawal developed a demand driven
call graph construction algorithm that solves the problem
of computing the set of procedures potentially called at a
particular call site without computing this information for
every call site [6]. This algorithm updates information for a
single call site, and thus is suggested for scenarios in which
precise call graph information is only needed at certain call
sites on a demand basis, such as program slicing. In con-
trast, besides we can handle the specific aspectual features,
in our approach, a precise call graph has already been built,
and it is desired to be updated after a session of changes
occur. As pointed out in [7], demand driven call graph
construction algorithm is only concerned with narrowing
type sets, whereas incremental call graph construction in
response to changes must handle the possibility of both nar-
rowing and widening reaching type sets in order to avoid
precision losses.

7. Concluding Remarks

In this paper, we presented an incremental call graph re-
analysis algorithm for AspectJ software. We use atomic
change representation to capture the semantic differences
between two program versions. We also explore the rela-
tionship between atomic changes and AspectJ call graph,
and update the initial constructed call graph incrementally.
The main advantage of our approach is to reuse the existing
analysis result, and therefore, eliminate a large portion of
unnecessary cost.

We experimented the reanalysis algorithm based on 24
versions of AspectJ benchmarks. The result indicated, for
the subject programs we investigated, our approach can sig-
nificantly reduce as much as 75% analysis cost to an ex-
haustive analysis. As our future work, we would like to
apply the basic idea of our reanalysis approach to other call
graph [24], control flow graph [9,15,17], and system depen-
dence graph [30] analysis techniques, to reduce the analysis
cost in software maintenance.
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